Modeling multimedia contents through probabilistic feature signatures

We introduce a new family of flexible feature representations for content-based multimedia retrieval: probabilistic feature signatures. While conventional feature histograms and feature signatures aggregate the multimedia objects' feature distributions exhibited in some feature space according to a partitioning, probabilistic feature signatures model these feature distributions by means of discrete or continuous probability distributions. In this way, they combine the advantages of high expressiveness and compactness, for instance through Gaussian mixture models. In this paper, we introduce the concept of probabilistic feature signatures and provide the empirical evidence of high retrieval performance when using this feature representation type. We show that probabilistic feature signatures are able to outperform conventional feature signatures.

[1]  Joachim M. Buhmann,et al.  Empirical Evaluation of Dissimilarity Measures for Color and Texture , 2001, Comput. Vis. Image Underst..

[2]  Nicu Sebe,et al.  The State of the Art in Image and Video Retrieval , 2003, CIVR.

[3]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[4]  Thomas Seidl,et al.  A comparative study of similarity measures for content-based multimedia retrieval , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[5]  Haim H. Permuter,et al.  A study of Gaussian mixture models of color and texture features for image classification and segmentation , 2006, Pattern Recognit..

[6]  Thomas Seidl,et al.  Signature quadratic form distances for content-based similarity , 2009, ACM Multimedia.

[7]  Thomas Seidl,et al.  Signature Quadratic Form Distance , 2010, CIVR '10.

[8]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[9]  Thomas Seidl,et al.  Modeling image similarity by Gaussian mixture models and the Signature Quadratic Form Distance , 2011, 2011 International Conference on Computer Vision.

[10]  Zi Huang,et al.  Dissimilarity measures for content-based image retrieval , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[11]  Gerald Schaefer,et al.  UCID: an uncompressed color image database , 2003, IS&T/SPIE Electronic Imaging.

[12]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[13]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[14]  Yishay Mansour,et al.  An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering , 1997, UAI.

[15]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Cor J. Veenman,et al.  Visual Word Ambiguity , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Michael Isard,et al.  Lost in quantization: Improving particular object retrieval in large scale image databases , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[20]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[21]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[22]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[23]  Nuno Vasconcelos,et al.  Feature representations for image retrieval: beyond the color histogram , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[24]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[25]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Haim H. Permuter,et al.  Gaussian mixture models of texture and colour for image database retrieval , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..