Development of Reduced Preisach Model Using Discrete Empirical Interpolation Method
暂无分享,去创建一个
Ulrich Gabbert | Jinjun Shan | Zhi Li | U. Gabbert | J. Shan | Zhi Li
[1] Jinjun Shan,et al. Modeling and Inverse Compensation for Coupled Hysteresis in Piezo-Actuated Fabry–Perot Spectrometer , 2017, IEEE/ASME Transactions on Mechatronics.
[2] W. M. Rucker,et al. Identification procedures of Preisach model , 2002 .
[3] Qingsong Xu,et al. Digital Integral Terminal Sliding Mode Predictive Control of Piezoelectric-Driven Motion System , 2016, IEEE Transactions on Industrial Electronics.
[4] Jun Zhang,et al. A compressive sensing-based approach for Preisach hysteresis model identification* , 2016 .
[5] Tomáš Zelinka,et al. Generalized Preisach model of hysteresis — theory and experiment , 1990 .
[6] J.A. De Abreu-Garcia,et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.
[7] Lu Xia,et al. A computationally efficient implementation of a full and reduced-order electrochemistry-based model for Li-ion batteries , 2017 .
[8] Yun-Jung Lee,et al. Fast Preisach modeling method for shape memory alloy actuators using major hysteresis loops , 2004 .
[9] Tianyou Chai,et al. Compensation of Hysteresis Nonlinearity in Magnetostrictive Actuators With Inverse Multiplicative Structure for Preisach Model , 2014, IEEE Transactions on Automation Science and Engineering.
[10] Sergej Fatikow,et al. Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey , 2016, IEEE Transactions on Automation Science and Engineering.
[11] Chun-Yi Su,et al. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis , 2000, IEEE Trans. Autom. Control..
[12] I. Mayergoyz,et al. Generalized Preisach model of hysteresis , 1988 .
[13] Yan Lin,et al. Implementable Adaptive Inverse Control of Hysteretic Systems via Output Feedback With Application to Piezoelectric Positioning Stages , 2016, IEEE Transactions on Industrial Electronics.
[14] Danny C. Sorensen,et al. A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction , 2012, SIAM J. Numer. Anal..
[15] Ulrich Gabbert,et al. Control system design for nano-positioning using piezoelectric actuators , 2016 .
[16] F. Preisach. Über die magnetische Nachwirkung , 1935 .
[17] Qingsong Xu,et al. Continuous Integral Terminal Third-Order Sliding Mode Motion Control for Piezoelectric Nanopositioning System , 2017, IEEE/ASME Transactions on Mechatronics.
[18] Karen Willcox,et al. Model Order Reduction for Reacting Flows: Laminar Gaussian Flame Applications , 2017 .
[19] Xinkai Chen,et al. A Comprehensive Dynamic Model for Magnetostrictive Actuators Considering Different Input Frequencies With Mechanical Loads , 2016, IEEE Transactions on Industrial Informatics.
[20] Danny C. Sorensen,et al. Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..
[21] Jinjun Shan,et al. Inverse Compensation Based Synchronization Control of the Piezo-Actuated Fabry–Perot Spectrometer , 2017, IEEE Transactions on Industrial Electronics.
[22] R. Ben Mrad,et al. On the classical Preisach model for hysteresis in piezoceramic actuators , 2003 .
[23] Thanh Nho Do,et al. A survey on hysteresis modeling, identification and control , 2014 .
[24] Mayergoyz,et al. Mathematical models of hysteresis. , 1986, Physical review letters.
[25] Peter Benner,et al. Adaptive POD–DEIM basis construction and its application to a nonlinear population balance system , 2017 .
[26] Xinkai Chen,et al. Adaptive Control for Ionic Polymer-Metal Composite Actuators , 2016, IEEE Transactions on Systems, Man, and Cybernetics: Systems.
[27] H. Bergveld,et al. Model order reduction of Li-ion batteries via POD and DEIM , 2016 .
[28] Jan Tommy Gravdahl,et al. On Implementation of the Preisach Model Identification and Inversion for Hysteresis Compensation , 2015 .