Molecular Reproduction & Development 82 : 587 – 604 ( 2015 ) FRAP , FLIM , and FRET : Detection and Analysis of Cellular Dynamics on a Molecular Scale Using Fluorescence Microscopy

The combination of fluorescent‐probe technology plus modern optical microscopes allows investigators to monitor dynamic events in living cells with exquisite temporal and spatial resolution. Fluorescence recovery after photobleaching (FRAP), for example, has long been used to monitor molecular dynamics both within cells and on cellular surfaces. Although bound by the diffraction limit imposed on all optical microscopes, the combination of digital cameras and the application of fluorescence intensity information on large‐pixel arrays have allowed such dynamic information to be monitored and quantified. Fluorescence lifetime imaging microscopy (FLIM), on the other hand, utilizes the information from an ensemble of fluorophores to probe changes in the local environment. Using either fluorescence‐intensity or lifetime approaches, fluorescence resonance energy transfer (FRET) microscopy provides information about molecular interactions, with Ångstrom resolution. In this review, we summarize the theoretical framework underlying these methods and illustrate their utility in addressing important problems in reproductive and developmental systems. Mol. Reprod. Dev. 82: 587–604, 2015. © 2015 Wiley Periodicals, Inc.

[1]  Y. K. Levine,et al.  Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. , 1995, Analytical biochemistry.

[2]  Ching-Wei Chang,et al.  Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy. , 2012, Journal of biophotonics.

[3]  W. Webb,et al.  Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Ryohei Yasuda,et al.  Local, persistent activation of Rho GTPases during plasticity of single dendritic spines , 2011, Nature.

[5]  C. Vonesch Fast and automated wavelet-regularized image restoration in fluorescence microscopy , 2009 .

[6]  J. Davoust,et al.  Fringe pattern photobleaching, a new method for the measurement of transport coefficients of biological macromolecules. , 1982, The EMBO journal.

[7]  Karsten Weis,et al.  Visualization of a Ran-GTP Gradient in Interphase and Mitotic Xenopus Egg Extracts , 2002, Science.

[8]  Michiyuki Matsuda,et al.  Spatiotemporal activation of Rac1 for engulfment of apoptotic cells , 2008, Proceedings of the National Academy of Sciences.

[9]  Jing Xu,et al.  Visualization of Polarized Membrane Type 1 Matrix Metalloproteinase Activity in Live Cells by Fluorescence Resonance Energy Transfer Imaging* , 2008, Journal of Biological Chemistry.

[10]  Chittanon Buranachai,et al.  Rapid Frequency-Domain FLIM Spinning Disk Confocal Microscope: Lifetime Resolution, Image Improvement and Wavelet Analysis , 2008, Journal of Fluorescence.

[11]  D. Axelrod,et al.  Cell surface heating during fluorescence photobleaching recovery experiments. , 1977, Biophysical journal.

[12]  L. Philipsen,et al.  T Cell Activation Results in Conformational Changes in the Src Family Kinase Lck to Induce Its Activation , 2013, Science Signaling.

[13]  R. Cubeddu,et al.  Time-resolved fluorescence imaging in biology and medicine , 2002 .

[14]  Ching-Wei Chang,et al.  Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET. , 2007, Optics express.

[15]  J. McNally,et al.  Minimizing the impact of photoswitching of fluorescent proteins on FRAP analysis. , 2012, Biophysical journal.

[16]  Jacco van Rheenen,et al.  A Versatile Toolkit to Produce Sensitive FRET Biosensors to Visualize Signaling in Time and Space , 2013, Science Signaling.

[17]  B. Hyman,et al.  Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice , 2009, Science.

[18]  Yi Hao,et al.  Regulation of chromatin binding by a conformational switch in the tail of the Ran exchange factor RCC1 , 2008, The Journal of cell biology.

[19]  Ching-Wei Chang,et al.  Precise fluorophore lifetime mapping in live-cell, multi-photon excitation microscopy , 2010, Optics express.

[20]  B. Barisas,et al.  Interferometric fringe fluorescence photobleaching recovery interrogates entire cell surfaces. , 1998, Biophysical journal.

[21]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[22]  William R. Lloyd,et al.  The potential of label-free nonlinear optical molecular microscopy to non-invasively characterize the viability of engineered human tissue constructs. , 2014, Biomaterials.

[23]  Robert H. Wilson,et al.  Biophotonics: Clinical Fluorescence Spectroscopy and Imaging , 2013 .

[24]  C. Mullineaux,et al.  Using fluorescence recovery after photobleaching to measure lipid diffusion in membranes. , 2007, Methods in molecular biology.

[25]  M. Neil,et al.  Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier , 2004 .

[26]  A. Miyawaki,et al.  Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer. , 2006, Biochemistry.

[27]  S. Adams,et al.  FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis , 2014, eLife.

[28]  Mary-Ann Mycek,et al.  Calibration and validation of an optical sensor for intracellular oxygen measurements. , 2009, Journal of biomedical optics.

[29]  Taekjip Ha,et al.  Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics , 2010, Nature.

[30]  P. Bastiaens,et al.  Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling , 2013, Nature.

[31]  Enrico Gratton,et al.  Biosensor Förster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy , 2012, Microscopy research and technique.

[32]  Yasushi Okamura,et al.  Improving membrane voltage measurements using FRET with new fluorescent proteins , 2008, Nature Methods.

[33]  K. Suhling,et al.  Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution. , 2014, Optics letters.

[34]  William R. Lloyd,et al.  Instrumentation to rapidly acquire fluorescence wavelength-time matrices of biological tissues , 2010, Biomedical optics express.

[35]  Ching-Wei Chang,et al.  Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells. , 2009, Journal of biomedical optics.

[36]  William R. Lloyd,et al.  Fluorescence lifetime imaging microscopy for quantitative biological imaging. , 2013, Methods in cell biology.

[37]  Alexandre F. Carisey,et al.  Fluorescence recovery after photobleaching. , 2011, Methods in molecular biology.

[38]  M. Matsuda,et al.  Analysis of the spatiotemporal activation of rho GTPases using Raichu probes. , 2006, Methods in enzymology.

[39]  Petr Kaláb,et al.  The design of Förster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase. , 2010, Methods.

[40]  Brandon L. Scott,et al.  N-Way FRET Microscopy of Multiple Protein-Protein Interactions in Live Cells , 2013, PloS one.

[41]  D. Agard,et al.  The use of a charge-coupled device for quantitative optical microscopy of biological structures. , 1987, Science.

[42]  Michael Unser,et al.  A Fast Multilevel Algorithm for Wavelet-Regularized Image Restoration , 2009, IEEE Transactions on Image Processing.

[43]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[44]  J. Waters,et al.  Live-cell fluorescence imaging. , 2007, Methods in cell biology.

[45]  Dylan M Owen,et al.  Excitation-resolved hyperspectral fluorescence lifetime imaging using a UV-extended supercontinuum source. , 2007, Optics letters.

[46]  S. John,et al.  Conformational changes of a Ca2+-binding domain of the Na+/Ca2+ exchanger monitored by FRET in transgenic zebrafish heart. , 2008, American journal of physiology. Cell physiology.

[47]  P. Verveer,et al.  Graphical representation and multicomponent analysis of single‐frequency fluorescence lifetime imaging microscopy data , 2004, Journal of microscopy.

[48]  B. Vojnovic Advanced Time‐Correlated Single Photon Counting Techniques , 2006 .

[49]  David E. Wolf,et al.  Imaging Membrane Organization and Dynamics , 1991 .

[50]  S. Arold,et al.  Inhibition of Basal FGF Receptor Signaling by Dimeric Grb2 , 2012, Cell.

[51]  N. Ramanujam,et al.  In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia , 2007, Proceedings of the National Academy of Sciences.

[52]  Patrick S Daugherty,et al.  Evolutionary optimization of fluorescent proteins for intracellular FRET , 2005, Nature Biotechnology.

[53]  W. Webb,et al.  Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. , 1999, Biophysical journal.

[54]  Elliot L Elson,et al.  Fluorescence correlation spectroscopy: past, present, future. , 2011, Biophysical journal.

[55]  Petr Herman,et al.  Fluorescence lifetime‐resolved pH imaging of living cells , 2003, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[56]  Kristin K. Sharman,et al.  Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes. , 1999, Analytical chemistry.

[57]  Gaudenz Danuser,et al.  Coordination of Rho GTPase activities during cell protrusion , 2009, Nature.

[58]  Shuichi Takayama,et al.  Optical imaging in microfluidic bioreactors enables oxygen monitoring for continuous cell culture. , 2006, Journal of biomedical optics.

[59]  J. Waters Live-cell fluorescence imaging. , 2013, Methods in cell biology.

[60]  T. Knöpfel,et al.  Design and characterization of a DNA‐encoded, voltage‐sensitive fluorescent protein , 2001, The European journal of neuroscience.

[61]  E. Elson,et al.  Formation of acetylcholine receptor clusters in chick myotubes: migration or new insertion? , 1989, The Journal of cell biology.

[62]  S. Padilla-Parra,et al.  FRET microscopy in the living cell: Different approaches, strengths and weaknesses , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[63]  Mary-Ann Mycek,et al.  Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models. , 2006, Optics express.

[64]  Alessandro Esposito,et al.  Fluorescence Lifetime Imaging Microscopy , 2004, Current protocols in cell biology.

[65]  S. John,et al.  Conformational changes of the Ca(2+) regulatory site of the Na(+)-Ca(2+) exchanger detected by FRET. , 2004, Biophysical journal.

[66]  F. Waharte,et al.  A two-photon FRAP analysis of the cytoskeleton dynamics in the microvilli of intestinal cells. , 2005, Biophysical journal.

[67]  R. Cardullo Theoretical principles and practical considerations for fluorescence resonance energy transfer microscopy. , 2013, Methods in cell biology.

[68]  Ching-Wei Chang,et al.  Improving Accuracy and Precision in Biological Applications of Fluorescence Lifetime Imaging Microscopy. , 2009 .

[69]  Kazuhiro Aoki,et al.  Development of an optimized backbone of FRET biosensors for kinases and GTPases , 2011, Molecular biology of the cell.

[70]  Michael Knop,et al.  Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling , 2007, Nature Cell Biology.

[71]  H. Sitte,et al.  Physical and Functional Interaction between the Dopamine Transporter and the Synaptic Vesicle Protein Synaptogyrin-3 , 2009, The Journal of Neuroscience.

[72]  M. Martin-Fernandez,et al.  Single Molecule Fluorescence Detection and Tracking in Mammalian Cells: The State-of-the-Art and Future Perspectives , 2012, International journal of molecular sciences.

[73]  D. E. Wolf,et al.  The development of regionalized lipid diffusibility in the germ cell plasma membrane during spermatogenesis in the mouse , 1986, Journal of Cell Biology.

[74]  B. Spring,et al.  Image analysis for denoising full‐field frequency‐domain fluorescence lifetime images , 2009, Journal of microscopy.

[75]  D. E. Wolf,et al.  Causes of nondiffusing lipid in the plasma membrane of mammalian spermatozoa. , 1988, Biochemistry.

[76]  Kevin W. Eliceiri,et al.  Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment , 2008, Clinical & Experimental Metastasis.

[77]  Enrico Gratton,et al.  NADH distribution in live progenitor stem cells by phasor-fluorescence lifetime image microscopy. , 2012, Biophysical journal.

[78]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[79]  Enrico Gratton,et al.  Fluid Shear Stress on Endothelial Cells Modulates Mechanical Tension across VE-Cadherin and PECAM-1 , 2013, Current Biology.

[80]  David M. Coleman,et al.  A Two-Dimensional Fluorescence Lifetime Imaging System Using a Gated Image Intensifier , 1991 .

[81]  Axel Bergmann,et al.  Lifetime imaging with the Zeiss LSM-510 , 2002, SPIE BiOS.

[82]  F. Sachs,et al.  Interplay between Cytoskeletal Stresses and Cell Adaptation under Chronic Flow , 2012, PloS one.

[83]  Paul Urayama,et al.  Fluorescence Lifetime Imaging Microscopy of Endogenous Biological Fluorescence , 2003 .

[84]  F. Wouters,et al.  Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[85]  T Wilson,et al.  Low‐cost, frequency‐domain, fluorescence lifetime confocal microscopy , 2004, Journal of microscopy.

[86]  R. Clegg,et al.  Polar Plot Representation for Frequency-Domain Analysis of Fluorescence Lifetimes , 2005, Journal of Fluorescence.

[87]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[88]  D. E. Wolf,et al.  Diffusion and regionalization in membranes of maturing ram spermatozoa , 1984, The Journal of cell biology.

[89]  Ching-Wei Chang,et al.  Vinculin tension distributions of individual stress fibers within cell–matrix adhesions , 2013, Journal of Cell Science.

[90]  M. Mycek,et al.  Quantitative Molecular Imaging in Living Cells via FLIM , 2012 .

[91]  W. Webb,et al.  Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[92]  T. Dewey,et al.  Biophysical and Biochemical Aspects of Fluorescence Spectroscopy , 2013, Springer US.

[93]  Alexander M. Jones,et al.  Abscisic acid dynamics in roots detected with genetically encoded FRET sensors , 2014, eLife.

[94]  Giovanni Pellacani,et al.  Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy , 2011, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[95]  Michael Schaefer,et al.  Reversible photobleaching of enhanced green fluorescent proteins. , 2005, Biochemistry.

[96]  Ching-Wei Chang,et al.  Enhancing precision in time-domain fluorescence lifetime imaging. , 2010, Journal of biomedical optics.

[97]  P. So,et al.  Comparing the quantification of Forster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging. , 2006, Journal of biomedical optics.

[98]  A. Bergmann,et al.  Multispectral fluorescence lifetime imaging by TCSPC , 2007, Microscopy research and technique.

[99]  W. Webb,et al.  Dynamics of fluorescence marker concentration as a probe of mobility. , 1976, Biophysical journal.

[100]  L. Aravind,et al.  The Scaffolding Protein Synapse-Associated Protein 97 Is Required for Enhanced Signaling Through Isotype-Switched IgG Memory B Cell Receptors , 2012, Science Signaling.

[101]  Akihiro Kusumi,et al.  Tracking single molecules at work in living cells. , 2014, Nature chemical biology.

[102]  Kenneth P. Ghiggino,et al.  Fluorescence lifetime measurements using a novel fiber‐optic laser scanning confocal microscope , 1992 .

[103]  Michael Z. Lin,et al.  Improving FRET dynamic range with bright green and red fluorescent proteins , 2012, Nature Methods.

[104]  R. Pego,et al.  Analysis of binding reactions by fluorescence recovery after photobleaching. , 2004, Biophysical journal.

[105]  Frederick Sachs,et al.  A fluorescence energy transfer‐based mechanical stress sensor for specific proteins in situ , 2008, The FEBS journal.

[106]  G. Hunnicutt,et al.  Cyclic 3′,5′-AMP Causes ADAM1/ADAM2 to Rapidly Diffuse Within the Plasma Membrane of Guinea Pig Sperm1 , 2008, Biology of reproduction.

[107]  W. Webb,et al.  Influence of membrane lipids on acetylcholine receptor and lipid probe diffusion in cultured myotube membrane. , 1978, Biochemistry.

[108]  Horst Wallrabe,et al.  Three-color spectral FRET microscopy localizes three interacting proteins in living cells. , 2010, Biophysical journal.

[109]  Jin Zhang,et al.  FRET-based biosensors for protein kinases: illuminating the kinome. , 2007, Molecular bioSystems.

[110]  W. Webb,et al.  Lateral transport of a lipid probe and labeled proteins on a cell membrane. , 1977, Science.

[111]  A. Draaijer,et al.  Fluorescence lifetime imaging of oxygen in living cells , 2007, Journal of Fluorescence.

[112]  Robert M. Clegg,et al.  Engineering Redox-Sensitive Linkers for Genetically Encoded FRET-Based Biosensors , 2008, Experimental biology and medicine.

[113]  Rainer Erdmann,et al.  Time-resolved confocal scanning device for ultrasensitive fluorescence detection , 2001 .

[114]  R. Cardullo,et al.  Assembly of the fluorescent acrosomal matrix and its fate in fertilization in the water strider, Aquarius remigis , 2011, Journal of cellular physiology.

[115]  R. Cardullo Theoretical principles and practical considerations for fluorescence resonance energy transfer microscopy. , 2007, Methods in cell biology.

[116]  Frederick Sachs,et al.  Orientation-based FRET sensor for real-time imaging of cellular forces , 2012, Journal of Cell Science.

[117]  Frederick Sachs,et al.  Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor , 2011, Journal of Cell Science.

[118]  Erik F. Y. Hom,et al.  Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. , 1999, Biophysical journal.