THE LINEAR INSTABILITY OF DILUTE ULTRARELATIVISTIC e± PAIR BEAMS

The annihilation of TeV photons from extragalactic TeV sources and the extragalactic background light produces ultrarelativistic beams, which are subject to powerful plasma instabilities that sap their kinetic energy. Here we study the linear phase of the plasma instabilities that these pair beams drive. To this end, we calculate the linear growth rate of the beam-plasma and oblique instability in the electrostatic approximation in both the reactive and kinetic regimes, assuming a Maxwell–Jüttner distribution for the pair beam. We reproduce the well-known reactive and kinetic growth rates for both the beam-plasma and oblique mode. We demonstrate for the oblique instability that there is a broad spectrum of unstable modes that grow at the maximum rate for a wide range of beam temperatures and wave-vector orientations relative to the beam. We also delineate the conditions for applicability for the reactive and kinetic regimes and find that the beam-plasma mode transitions to the reactive regime at a lower Lorentz factor than the oblique mode due to a combination of their different scalings and the anisotropy of the velocity dispersions. Applying these results to the ultrarelativistic beams from TeV blazars, we confirm that these beams are unstable to both the kinetic oblique mode and the reactive beam-plasma mode. These results are important in understanding how powerful plasma instabilities may sap the energy of the ultrarelativistic beams as they propagate through intergalactic space.

[1]  R. Schlickeiser,et al.  The reduction of distant blazars’ inverse Compton cascade emission by plasma instability induced beam plateauing , 2015 .

[2]  A. Lamberts,et al.  PATCHY BLAZAR HEATING: DIVERSIFYING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM , 2015, 1502.07980.

[3]  A. Lamberts,et al.  THE EFFECT OF NONLINEAR LANDAU DAMPING ON ULTRARELATIVISTIC BEAM PLASMA INSTABILITIES , 2014, 1410.3797.

[4]  L. Sironi,et al.  RELATIVISTIC PAIR BEAMS FROM TeV BLAZARS: A SOURCE OF REPROCESSED GeV EMISSION RATHER THAN INTERGALACTIC HEATING , 2013, 1312.4538.

[5]  A. Broderick,et al.  IMPLICATIONS OF PLASMA BEAM INSTABILITIES FOR THE STATISTICS OF THE FERMI HARD GAMMA-RAY BLAZARS AND THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND , 2013, 1308.0340.

[6]  Kendrick M. Smith,et al.  LOWER LIMITS ON THE ANISOTROPY OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND IMPLIED BY THE 2FGL AND 1FHL CATALOGS , 2013, 1308.0015.

[7]  N. Katz,et al.  An empirical model for the star formation history in dark matter haloes , 2013, 1306.0650.

[8]  R. Schlickeiser,et al.  PLASMA EFFECTS ON FAST PAIR BEAMS. II. REACTIVE VERSUS KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES , 2013, 1308.4594.

[9]  F. Miniati,et al.  THE PAIR BEAM PRODUCTION SPECTRUM FROM PHOTON–PHOTON ANNIHILATION IN COSMIC VOIDS , 2012 .

[10]  F. Miniati,et al.  PLASMA EFFECTS ON FAST PAIR BEAMS IN COSMIC VOIDS , 2012, ICOPS 2012.

[11]  F. Miniati,et al.  RELAXATION OF BLAZAR-INDUCED PAIR BEAMS IN COSMIC VOIDS , 2012, 1208.1761.

[12]  A. Broderick,et al.  THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. III. IMPLICATIONS FOR GALAXY CLUSTERS AND THE FORMATION OF DWARF GALAXIES , 2011, 1106.5505.

[13]  A. Broderick,et al.  THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. II. REWRITING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM , 2011, 1106.5504.

[14]  A. Broderick,et al.  THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. I. IMPLICATIONS OF PLASMA INSTABILITIES FOR THE INTERGALACTIC MAGNETIC FIELD AND EXTRAGALACTIC GAMMA-RAY BACKGROUND , 2011, 1106.5494.

[15]  V. Springel,et al.  The Lyman α forest in a blazar-heated Universe , 2011, 1107.3837.

[16]  M. Mori,et al.  LOWER BOUNDS ON INTERGALACTIC MAGNETIC FIELDS FROM SIMULTANEOUSLY OBSERVED GeV–TeV LIGHT CURVES OF THE BLAZAR Mrk 501 , 2011, 1103.3835.

[17]  A. M. Taylor,et al.  EGMF Constraints from Simultaneous GeV-TeV Observations of Blazars , 2011, 1101.0932.

[18]  Charles D. Dermer,et al.  TIME DELAY OF CASCADE RADIATION FOR TeV BLAZARS AND THE MEASUREMENT OF THE INTERGALACTIC MAGNETIC FIELD , 2010, 1011.6660.

[19]  Klaus Dolag,et al.  LOWER LIMIT ON THE STRENGTH AND FILLING FACTOR OF EXTRAGALACTIC MAGNETIC FIELDS , 2011 .

[20]  G. Ghisellini,et al.  Extreme TeV blazars and the intergalactic magnetic field , 2010, 1009.1048.

[21]  Ievgen Vovk,et al.  Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars , 2010, Science.

[22]  L. Gremillet,et al.  Exact relativistic kinetic theory of the full unstable spectrum of an electron-beam-plasma system with Maxwell-Jüttner distribution functions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  T. Venters CONTRIBUTION TO THE EXTRAGALACTIC GAMMA-RAY BACKGROUND FROM THE CASCADES OF VERY HIGH ENERGY GAMMA RAYS FROM BLAZARS , 2009, 0912.3794.

[24]  A. Neronov,et al.  Sensitivity of {gamma}-ray telescopes for detection of magnetic fields in the intergalactic medium , 2009, 0910.1920.

[25]  T. Totani,et al.  THE BLAZAR SEQUENCE AND THE COSMIC GAMMA-RAY BACKGROUND RADIATION IN THE FERMI ERA , 2008, 0810.3580.

[26]  T. Totani,et al.  Gamma-Ray Luminosity Function of Blazars and the Cosmic Gamma-Ray Background: Evidence for the Luminosity-Dependent Density Evolution , 2006, astro-ph/0602178.

[27]  A. R. Bazer-Bachi,et al.  A low level of extragalactic background light as revealed by γ-rays from blazars , 2005, Nature.

[28]  K. Mannheim,et al.  BL Lac Contribution to the Extragalactic Gamma-Ray Background , 2004, 0705.3778.

[29]  K. Mannheim,et al.  Implications of cosmological gamma-ray absorption - II. Modification of gamma-ray spectra , 2003, astro-ph/0309141.

[30]  L. Pozzetti,et al.  Deep galaxy counts, extragalactic background light and the stellar baryon budget , 1999, astro-ph/9907315.

[31]  F. Stecker,et al.  Absorption of High-Energy Gamma Rays by Interactions with Extragalactic Starlight Photons at High Redshifts and the High-Energy Gamma-Ray Background , 1997, astro-ph/9708182.

[32]  F. Stecker,et al.  Estimate of the intergalactic infrared radiation field from γ-ray observations of the galaxy Mrk421 , 1994, Nature.

[33]  O. C. de Jager,et al.  TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields , 1992 .

[34]  G. R. Hadley,et al.  Relativistic distribution functions and applications to electron beams , 1975 .

[35]  R. Gould,et al.  Pair production in photon-photon collisions. , 1967 .

[36]  R. Gould,et al.  Opacity of the Universe to High-Energy Photons , 1966 .

[37]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[38]  F. Jüttner Die Dynamik eines bewegten Gases in der Relativtheorie , 2022 .