Lattice Models for Conditional Independence in a Multivariate Normal Distribution

The lattice conditional independence model N(X) is defined to be the set of all normal distributions on WRI such that for every pair L, M E X, XL and XM are conditionally independent given XL n M. Here X is a ring of subsets of the finite index set I and, for K E X, XK is the coordinate projection of x E HII onto RK* Statistical properties of N(Y) may be studied, for example, maximum likelihood inference, invariance and the problem of testing Ho: N(X) vs. H: N(.1) when ,W is a subring of X. The set J(X) of join-irreducible elements of XY plays a central role in the analysis of N(X). This class of statistical models occurs in the analysis of nonnested multivariate missing data patterns and nonnested dependent linear regression models.

[1]  M. Perlman,et al.  Normal linear models with lattice conditional independence restrictions , 1994 .

[2]  M. Frydenberg,et al.  Decomposition of maximum likelihood in mixed graphical interaction models , 1989 .

[3]  S. A. Andersson The lattice structure of orthogonal linear models and orthogonal variance component models , 1990 .

[4]  Steffen L. Lauritzen,et al.  Independence properties of directed markov fields , 1990, Networks.

[5]  N. Wermuth,et al.  Graphical Models for Associations between Variables, some of which are Qualitative and some Quantitative , 1989 .

[6]  N. Giri Locally minimax tests for multiple correlations , 1979 .

[7]  Steen A. Andersson,et al.  Distributions of Maximal Invariants Using Quotient Measures , 1982 .

[8]  J. N. R. Jeffers,et al.  Graphical Models in Applied Multivariate Statistics. , 1990 .

[9]  Steen A. Andersson,et al.  Invariant Normal Models , 1975 .

[10]  M. L. Eaton,et al.  MULTIVARIATE TESTS WITH INCOMPLETE DATA , 1983 .

[11]  N. Wermuth Linear Recursive Equations, Covariance Selection, and Path Analysis , 1980 .

[12]  Steen A. Andersson,et al.  Distribution of Eigenvalues in Multivariate Statistical Analysis , 1983 .

[13]  M. Frydenberg The chain graph Markov property , 1990 .

[14]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[15]  Somesh Das Gupta Tests on multiple correlation coefficient and multiple partial correlation coefficient , 1977 .

[16]  T. Speed,et al.  Gaussian Markov Distributions over Finite Graphs , 1986 .

[17]  S. Lauritzen,et al.  Mixed graphical association models; discussions and reply , 1989 .

[18]  J. Marden Invariant Tests on Covariance Matrices , 1981 .

[19]  T. J. Page Multivariate Statistics: A Vector Space Approach , 1984 .

[20]  N. Wermuth Analogies between Multiplicative Models in Contingency Tables and Covariance Selection , 1976 .

[21]  T. Speed,et al.  Recursive causal models , 1984, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[22]  Nanny Wermuth,et al.  ON BLOCK-RECURSIVE LINEAR REGRESSION EQUATIONTS , 1992 .

[23]  Roger A. Sugden,et al.  Multiple Imputation for Nonresponse in Surveys , 1988 .

[24]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[25]  M. Perlman,et al.  Lattice-ordered conditional independence models for missing data , 1991 .

[26]  G. Grätzer General Lattice Theory , 1978 .