High-Dimension Multilabel Problems: Convex or Nonconvex Relaxation?

This paper is concerned with the problem of relaxing non convex functionals, used in image processing, into convex problems. We review most of the recently introduced relaxation methods, and we propose a new convex one based on a probabilistic approach, which has the advantages of being intuitive, flexible and involving an algorithm without inner loops. We investigate in detail the connections between the solutions of the relaxed functionals with a minimizer of the original one. Such connection is demonstrated only for non convex relaxation which turns out to be quite robust to initialization. As a case of study, we illustrate our theoretical analysis with numerical experiments, namely for the optical flow problem.

[1]  Gilles Aubert,et al.  Optimal partitions, regularized solutions, and application to image classification , 2005 .

[2]  Vanel A. Lazcano,et al.  A TV-L1 Optical Flow Method with Occlusion Detection , 2012, DAGM/OAGM Symposium.

[3]  S. Osher,et al.  Global minimization of Markov random fields with applications to optical flow , 2012 .

[4]  Timo Kohlberger,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .

[5]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[6]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[7]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[8]  Daniel Cremers,et al.  Tight convex relaxations for vector-valued labeling problems , 2011, 2011 International Conference on Computer Vision.

[9]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[10]  Daniel Cremers,et al.  Continuous Global Optimization in Multiview 3D Reconstruction , 2007, International Journal of Computer Vision.

[11]  Daniel Cremers,et al.  Convex Relaxation for Multilabel Problems with Product Label Spaces , 2010, ECCV.

[12]  Gabriel Peyré,et al.  Locally Parallel Texture Modeling , 2011, SIAM J. Imaging Sci..

[13]  Daniel Cremers,et al.  Tight Convex Relaxations for Vector-Valued Labeling , 2013, SIAM J. Imaging Sci..

[14]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[15]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[16]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[17]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[18]  Yunmei Chen,et al.  Projection Onto A Simplex , 2011, 1101.6081.

[19]  Daniel Cremers,et al.  A convex approach for computing minimal partitions , 2008 .

[20]  A. Chambolle An algorithm for Mean Curvature Motion , 2004 .

[21]  Pau Gargallo,et al.  A Narrow Band Method for the Convex Formulation of Discrete Multilabel Problems , 2010, Multiscale Model. Simul..

[22]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[23]  Daniel Cremers,et al.  A Convex Formulation of Continuous Multi-label Problems , 2008, ECCV.

[24]  Nicolas Papadakis,et al.  Active contours without level sets , 2012, 2012 19th IEEE International Conference on Image Processing.

[25]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[26]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[27]  Xue-Cheng Tai,et al.  Global Minimization for Continuous Multiphase Partitioning Problems Using a Dual Approach , 2011, International Journal of Computer Vision.

[28]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[29]  Gabriele Steidl,et al.  Segmentation of images with separating layers by fuzzy c-means and convex optimization , 2012, J. Vis. Commun. Image Represent..

[30]  Daniel Cremers,et al.  A Convex Approach to Minimal Partitions , 2012, SIAM J. Imaging Sci..

[31]  Daniel Cremers,et al.  Global Solutions of Variational Models with Convex Regularization , 2010, SIAM J. Imaging Sci..

[32]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[33]  Saïd Ladjal,et al.  Exemplar-Based Inpainting from a Variational Point of View , 2010, SIAM J. Math. Anal..

[34]  Pau Gargallo,et al.  Polyconvexification of the multi-label optical flow problem , 2010, 2010 IEEE International Conference on Image Processing.

[35]  Michael K. Ng,et al.  A Multiphase Image Segmentation Method Based on Fuzzy Region Competition , 2010, SIAM J. Imaging Sci..

[36]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[37]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[38]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[39]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[40]  Xavier Bresson,et al.  Completely Convex Formulation of the Chan-Vese Image Segmentation Model , 2012, International Journal of Computer Vision.

[41]  Patrick Pérez,et al.  Hierarchical Estimation and Segmentation of Dense Motion Fields , 2002, International Journal of Computer Vision.