Hexagonal Extensions of Toroidal Maps and Hypermaps

The rank 3 concept of a hypermap has recently been generalized to a higher rank structure in which hypermaps can be seen as “hyperfaces” but very few examples can be found in literature. We study finite rank 4 structures obtained by hexagonal extensions of toroidal hypermaps. Many new examples are produced that are regular or chiral, even when the extensions are polytopal. We also construct a new infinite family of finite nonlinear hexagonal extensions of the tetrahedron.

[1]  Chiral Polytopes and Suzuki Simple Groups , 2014 .

[2]  Egon Schulte,et al.  Reguläre Inzidenzkomplexe I , 1983 .

[3]  D. Garbe Über die regulären Zerlegungen geschlossener orientierbarer Flächen. , 1969 .

[5]  Daniel Pellicer CPR graphs and regular polytopes , 2008, Eur. J. Comb..

[6]  Dimitri Leemans,et al.  Highly symmetric hypertopes , 2016, 1604.03162.

[7]  Geoffrey C. Shephard,et al.  Regular 3-complexes with toroidal cells , 1977, J. Comb. Theory, Ser. B.

[8]  Michael Aschbacher,et al.  Flag structures on tits geometries , 1983 .

[9]  Jacques Tits,et al.  Sur les analogues algébriques des groupes semi-simples complexes , 1957 .

[10]  Egon Schulte,et al.  Chiral polytopes from hyperbolic honeycombs , 1995, Discret. Comput. Geom..

[11]  Timothy R. S. Walsh,et al.  Hypermaps versus bipartite maps , 1975 .

[12]  D. M. Y. Sommerville,et al.  An Introduction to The Geometry of N Dimensions , 2022 .

[13]  Marston D. E. Conder,et al.  Determination of all Regular Maps of Small Genus , 2001, J. Comb. Theory, Ser. B.

[14]  Jacques Tits,et al.  Buildings of Spherical Type and Finite BN-Pairs , 1974 .

[15]  H. Seifert,et al.  Die beiden Dodekaederräume , 1933 .

[16]  L. Heffter,et al.  Ueber metacyklische Gruppen und Nachbarconfigurationen , 1898 .

[17]  Charles J. Colbourn,et al.  A census of regular 3-polystroma arising from honeycombs , 1984, Discret. Math..

[18]  F.A. Sherk A Family of Regular Maps of Type {6, 6} , 1962, Canadian Mathematical Bulletin.

[19]  Francis Buekenhout,et al.  Diagrams for Geometries and Groups , 1979, J. Comb. Theory, Ser. A.

[20]  Egon Schulte,et al.  Chirality and projective linear groups , 1994, Discret. Math..

[21]  Asia Ivić Weiss,et al.  Free extensions of chiral polytopes , 1995 .

[22]  D. Leemans,et al.  C-groups of PSL(2,q) and PGL(2,q) , 2015 .

[23]  Michel Dehon Classifying Geometries with Cayley , 1994, J. Symb. Comput..

[24]  Peter McMullen,et al.  Locally unitary groups and regular polytopes , 2002, Adv. Appl. Math..

[25]  Isabel Hubard,et al.  Two atlases of abstract chiral polytopes for small groups , 2012, Ars Math. Contemp..

[26]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[27]  Eisentein Integers and Related C-groups , 1997 .

[28]  Egon Schulte,et al.  Reguläre Inzidenzkomplexe III , 1983 .

[29]  Jérémie Moerenhout Chiral polytopes arising from almost-simple groups with socle PSL(2, q) , 2017 .

[30]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[31]  An atlas of abstract regular polytopes for small groups , 2006 .

[32]  Chiral polyhedra arising from almost simple groups with socle $$PSL\left( 2,q\right) $$PSL2,q , 2016 .

[33]  Dimitri Leemans,et al.  An atlas of residually weakly primitive geometries for small groups, 14 , 1999 .

[34]  P. McMullen,et al.  Locally toroidal regular polytopes of rank 4 , 1992 .

[35]  T. Pisanski,et al.  Constructions for chiral polytopes , 2008 .

[36]  Francis Buekenhout Handbook of incidence geometry : buildings and foundations , 1995 .

[37]  Arjeh M. Cohen,et al.  Diagram Geometry: Related to Classical Groups and Buildings , 2015 .

[38]  Peter McMullen,et al.  Regular polytopes , 2007 .

[39]  Daniel Pellicer,et al.  A construction of higher rank chiral polytopes , 2010, Discret. Math..