A diffusive SI model with Allee effect and application to FIV.

A minimal reaction-diffusion model for the spatiotemporal spread of an infectious disease is considered. The model is motivated by the Feline Immunodeficiency Virus (FIV) which causes AIDS in cat populations. Because the infected period is long compared with the lifespan, the model incorporates the host population growth. Two different types are considered: logistic growth and growth with a strong Allee effect. In the model with logistic growth, the introduced disease propagates in form of a travelling infection wave with a constant asymptotic rate of spread. In the model with Allee effect the spatiotemporal dynamics are more complicated and the disease has considerable impact on the host population spread. Most importantly, there are waves of extinction, which arise when the disease is introduced in the wake of the invading host population. These waves of extinction destabilize locally stable endemic coexistence states. Moreover, spatially restricted epidemics are possible as well as travelling infection pulses that correspond either to fatal epidemics with succeeding host population extinction or to epidemics with recovery of the host population. Generally, the Allee effect induces minimum viable population sizes and critical spatial lengths of the initial distribution. The local stability analysis yields bistability and the phenomenon of transient epidemics within the regime of disease-induced extinction. Sustained oscillations do not exist.

[1]  P. Kareiva,et al.  Allee Dynamics and the Spread of Invading Organisms , 1993 .

[2]  A. Hastings Transients: the key to long-term ecological understanding? , 2004, Trends in ecology & evolution.

[3]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[4]  F. Brauer,et al.  Models for the spread of universally fatal diseases. , 1990, Journal of mathematical biology.

[5]  Horst R. Thieme,et al.  Mathematics in Population Biology , 2003 .

[6]  W. O. Kermack,et al.  Contributions to the Mathematical Theory of Epidemics. II. The Problem of Endemicity , 1932 .

[7]  Abraham Nitzan,et al.  Nucleation in systems with multiple stationary states , 1974 .

[8]  A. Ōkubo,et al.  On the spatial spread of the grey squirrel in Britain , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[9]  G. Dwyer Density Dependence and Spatial Structure in the Dynamics of Insect Pathogens , 1994, The American Naturalist.

[10]  Grenfell,et al.  Inverse density dependence and the Allee effect. , 1999, Trends in ecology & evolution.

[11]  W. Saarloos Front propagation into unstable states , 2003, cond-mat/0308540.

[12]  S. Petrovskii,et al.  Some exact solutions of a generalized Fisher equation related to the problem of biological invasion. , 2001, Mathematical biosciences.

[13]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[14]  J. Murray,et al.  On the spatial spread of rabies among foxes , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[16]  A. Nold Heterogeneity in disease-transmission modeling , 1980 .

[17]  Spatial patterns of propagating waves of fox rabies , 1989 .

[18]  Brian Dennis,et al.  ALLEE EFFECTS: POPULATION GROWTH, CRITICAL DENSITY, AND THE CHANCE OF EXTINCTION , 1989 .

[19]  J. G. Skellam Random dispersal in theoretical populations , 1951, Biometrika.

[20]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[21]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[22]  A Pugliese,et al.  Population models for diseases with no recovery , 1990, Journal of mathematical biology.

[23]  William J. Sutherland,et al.  What Is the Allee Effect , 1999 .

[24]  S. Busenberg,et al.  Analysis of a disease transmission model in a population with varying size , 1990, Journal of mathematical biology.

[25]  Stephens,et al.  Consequences of the Allee effect for behaviour, ecology and conservation. , 1999, Trends in ecology & evolution.

[26]  Odo Diekmann,et al.  The velocity of spatial population expansion , 1990 .

[27]  Linda Rass,et al.  Spatial deterministic epidemics , 2003 .

[28]  Thomas Caraco,et al.  Stage‐Structured Infection Transmission and a Spatial Epidemic: A Model for Lyme Disease , 2002, The American Naturalist.

[29]  Michel Langlais,et al.  Disease propagation in connected host populations with density-dependent dynamics: the case of the Feline Leukemia Virus. , 2003, Journal of theoretical biology.

[30]  H. Hethcote,et al.  Disease transmission models with density-dependent demographics , 1992, Journal of mathematical biology.

[31]  Denis Mollison,et al.  Spatial Contact Models for Ecological and Epidemic Spread , 1977 .

[32]  N. Shigesada,et al.  Biological Invasions: Theory and Practice , 1997 .

[33]  R. Luther,et al.  II. Sitzung am Dienstag, den 22. Mai, vormittags 9 Uhr, im grossen Auditorium des chemischen Laboratoriums der Technischen Hochschule. Räumliche Fortpflanzung chemischer Reaktionen , 1906 .

[34]  H. McCallum,et al.  How should pathogen transmission be modelled? , 2001, Trends in ecology & evolution.

[35]  D Mollison,et al.  Dependence of epidemic and population velocities on basic parameters. , 1991, Mathematical biosciences.

[36]  D. Aronson,et al.  Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation , 1975 .

[37]  Herbert W. Hethcote,et al.  Dynamic models of infectious diseases as regulators of population sizes , 1992, Journal of mathematical biology.

[38]  Akira Sasaki,et al.  Pathogen invasion and host extinction in lattice structured populations , 1994, Journal of mathematical biology.

[39]  Benjamin M. Bolker,et al.  Mechanisms of disease‐induced extinction , 2004 .

[40]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[41]  M A Lewis,et al.  How predation can slow, stop or reverse a prey invasion , 2001, Bulletin of mathematical biology.

[42]  Sergei Petrovskii,et al.  An exact solution of a diffusive predator–prey system , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  F. Courchamp,et al.  Population dynamics of feline immunodeficiency virus within cat populations. , 1995, Journal of theoretical biology.

[44]  O. Diekmann,et al.  Patterns in the effects of infectious diseases on population growth , 1991, Journal of mathematical biology.

[45]  Michel Langlais,et al.  Pathogens can Slow Down or Reverse Invasion Fronts of their Hosts , 2005, Biological Invasions.

[46]  S. Cornell,et al.  Virus‐vectored immunocontraception to control feral cats on islands: a mathematical model , 2000 .

[47]  V. M. Kenkre,et al.  Traveling waves of infection in the hantavirus epidemics , 2002, Bulletin of mathematical biology.

[48]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[49]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[50]  H. Hethcote,et al.  Population size dependent incidence in models for diseases without immunity , 1994, Journal of mathematical biology.

[51]  O. Diekmann Mathematical Epidemiology of Infectious Diseases , 1996 .

[52]  Lutz Schimansky-Geier,et al.  Noise and diffusion in bistable nonequilibrium systems , 1985 .

[53]  Roy M. Anderson,et al.  Population dynamics of fox rabies in Europe , 1981, Nature.

[54]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[55]  D. Pontier,et al.  Dynamics of a feline retrovirus (FeLV) in host populations with variable spatial structure , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  W. Fagan,et al.  Invasion theory and biological control , 2002 .

[57]  R. May,et al.  Population Biology of Infectious Diseases , 1982, Dahlem Workshop Reports.

[58]  F. Hilker,et al.  Patterns of Patchy Spread in Deterministic and Stochastic Models of Biological Invasion and Biological Control , 2005, Biological Invasions.

[59]  R. May,et al.  Population biology of infectious diseases: Part I , 1979, Nature.

[60]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[61]  Noble Jv,et al.  Geographic and temporal development of plagues , 1974 .

[62]  D Greenhalgh,et al.  Modelling epidemics with variable contact rates. , 1995, Theoretical population biology.

[63]  George Sugihara,et al.  Modeling the biological control of an alien predator to protect island species from extinction , 1999 .

[64]  A. Sasaki,et al.  The evolution of parasite virulence and transmission rate in a spatially structured population. , 2000, Journal of theoretical biology.

[65]  J. Noble,et al.  Geographic and temporal development of plagues , 1974, Nature.