ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy

Abstract Economically viable chromite deposit occurrences are widespread in the ultramafic rocks of Semail ophiolite massifs of the northern Oman Mountains, particularly in the basal dunite and harzburgite unit of the mantle section. Geological mapping of this region is challenging, primarily due to difficult access, complexity of structures, and lack of resolution and areal integrity of lithological differentiation using conventional mapping techniques. The present research study evaluates the discrimination and occurrence of chromites bearing mineralized zones within ophiolites by analyzing the capabilities of Landsat TM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data; using a number of selected methods including decorrelated stretching, different band rationing and Principal Component Analysis image processing techniques exist in the scientific literature. The study results show that the processed VNIR and SWIR spectral wavelength regions are promising in detecting the areas of potential chromite bearing mineralized zones within the ophiolite region, and proved to be successful for mapping of serpentinized harzburgite containing chromites. Exploration geologists, industrialists and mine owners are advised to adopt this technique and avoid the limits in filed data alone for more exploration and exploitation of areas having chromite deposits in arid region elsewhere.

[1]  A. Ghulam,et al.  Lithological mapping in the Central Eastern Desert of Egypt using ASTER data , 2010 .

[2]  K. Watts Mesozoic carbonate slope facies marking the Arabian platform margin in Oman: depositional history, morphology and palaeogeography , 1990, Geological Society, London, Special Publications.

[3]  A. H. Ahmed,et al.  Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications , 2002 .

[4]  Raymond E. Arvidson,et al.  Mapping of serpentinites in the Eastern Desert of Egypt by using Landsat thematic mapper data , 1986 .

[5]  J. Malpas,et al.  Structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction , 1980, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[6]  A. Nicolas,et al.  Cumulative or Residual Origin for the Transition Zone in Ophiolites: Structural Evidence , 1983 .

[7]  W. P. Loughlin,et al.  PRINCIPAL COMPONENT ANALYSIS FOR ALTERATION MAPPING , 1991 .

[8]  T. Kusky,et al.  Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton: A Record of Early Oceanic Mantle Processes , 2002 .

[9]  J. Huntington,et al.  Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[10]  K. Glennie Geology of the Oman Mountains , 1977 .

[11]  K. W. Glennie,et al.  Late Cretaceous Nappes in Oman Mountains and Their Geologic Evolution , 1973 .

[12]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[13]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[14]  Jean-Claude Sibuet,et al.  Geological evolution of the tethys belt from the atlantic to the pamirs since the LIAS , 1986 .

[15]  M. Kouli,et al.  Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hellas , 2000 .

[16]  A. Nicolas,et al.  Chromite-Rich and Chromite-Poor Ophiolites: The Oman Case , 1991 .

[17]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[18]  Timothy M. Kusky,et al.  Precambrian ophiolites and related rocks , 2004 .

[19]  J. Malpas,et al.  Model for the origin of the Troodos massif, Cyprus, and other mideast ophiolites , 1984 .

[20]  David A. Rothery,et al.  Cover Decorrelation stretching as an aid to image interpretation , 1987 .

[21]  Alexander F. H. Goetz,et al.  Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by the use of computer-enhanced ERTS images , 1974 .

[22]  M. Cannat,et al.  Kinematics of oceanic thrusting in the Oman ophiolite: model of plate convergence , 1985 .

[23]  R. Coleman Tectonic setting for ophiolite obduction in Oman. , 1981 .

[24]  F. Sabins Remote Sensing: Principles and Interpretation , 1987 .

[25]  M. Ishii,et al.  Mineral and lithological mapping using thermal infrared remotely sensed data from ASTER simulator , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[26]  T. Augé Platinum-group-mineral inclusions in ophiolitic chromitite from the Vourinos Complex, Greece , 1985 .

[27]  Simon J. Hook,et al.  Simulated Aster data for geologic studies , 1995, IEEE Trans. Geosci. Remote. Sens..

[28]  R. Coleman,et al.  Ophiolite genesis and evolution of the oceanic lithosphere : proceedings of the Ophiolite Conference, held in Muscat, Oman, 7-18 January 1990 , 1991 .

[29]  M. Leblanc,et al.  Structural classification of chromite pods in southern New Caledonia , 1981 .

[30]  Michael Abrams,et al.  Remote sensing for porphyry copper deposits in southern Arizona , 1983 .

[31]  Alexander F. H. Goetz,et al.  DISCRIMINATION OF HYDROTHERMALLY ALTERED AND UNALTERED ROCKS IN VISIBLE AND NEAR INFRARED MULTISPECTRAL IMAGES , 1977 .

[32]  M. Leblanc,et al.  Chromite crystallization in a multicellular magma flow: Evidence from a chromitite dike in the Oman ophiolite , 1991 .

[33]  Yasushi Yamaguchi,et al.  Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands , 2003 .

[34]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[35]  R. V. Morris,et al.  Spectral reflectance‐compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry , 2004 .

[36]  Robert E. Crippen Selection of Landsat TM band and band-ratio combinations to maximize lithologic information in color composite displays , 1990 .

[37]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[38]  D. Rothery,et al.  Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images , 1988 .

[39]  John W. Salisbury,et al.  Visible and near infrared spectra of minerals and rocks: IX. Basic and ultrabasic igneous rocks , 1974 .

[40]  Simon J. Hook,et al.  Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .

[41]  Michael A. Brown Chromite Deposits And Their Ultramafic Host Rocks In The Oman Ophiolite , 1984 .

[42]  R. Lord,et al.  A model to explain the occurrence of platinum- and palladium-rich ophiolite complexes , 1996, Journal of the Geological Society.

[43]  Timothy M. Kusky,et al.  Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: an integrated field, Landsat TM, and SIR-C/X SAR approach , 2002 .

[44]  P. Johnson,et al.  NEOPROTEROZOIC OPHIOLITES IN THE ARABIAN SHIELD: FIELD RELATIONS AND STRUCTURE , 2004 .

[45]  A. Crósta,et al.  Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis , 2003 .

[46]  Raymond E. Arvidson,et al.  Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt , 1987 .

[47]  R. Bradshaw An Introduction to Ore Geology , 1982, Mineralogical Magazine.

[48]  John B. Adams,et al.  Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. , 1967 .

[49]  D. Rothery Improved discrimination of rock units using Landsat Thematic Mapper imagery of the Oman ophiolite , 1987, Journal of the Geological Society.

[50]  T. Ramadan,et al.  Mapping Gold-Bearing Massive Sulfide Deposits in the Neoproterozoic Allaqi Suture, Southeast Egypt with Landsat TM and SIR-C/X SAR Images , 2001 .

[51]  Timothy M. Kusky,et al.  Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM) , 2006 .

[52]  R. E. Walker,et al.  Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .

[53]  Sankaran Rajendran,et al.  Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data , 2011 .

[54]  O. Eckstrand Canadian mineral deposit types : a geological synopsis , 1984 .

[55]  Farouk El-Baz,et al.  Tertiary–Quaternary faulting and uplift in the northern Oman Hajar Mountains , 2005, Journal of the Geological Society.

[56]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[57]  E. Ghent,et al.  Metamorphism at the base of the Samail Ophiolite, southeastern Oman Mountains , 1981 .

[58]  D. B. Segal,et al.  Use of multispectral scanner images for assessment of hydrothermal alteration in the Marysvale, Utah, mining area , 1983 .

[59]  P. Burek Geology of the Oman Mountains: K.W. Glennie, M.G.A. Boeuf, M.W. Hughes Clarke, M. Moody-Stuart, W.F.H. Pilaar and B.M. Reinhardt. Verhandelingen van het Koninklijk Nederlands Geologisch Mijnbouwkundig Genootschap. Nijhoff, The Hague, 1975, Dfl. 300.00 , 1977 .

[60]  S. Lippard,et al.  The ophiolite of northern Oman , 1986 .

[61]  S. Gabr,et al.  Detecting areas of high-potential gold mineralization using ASTER data , 2010 .

[62]  J. Temple A numerical taxonomic study of species of Trinucleidae (Trilobita) from the British Isles , 1980, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[63]  T. Kusky,et al.  ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt , 2007 .

[64]  D. B. Segal,et al.  Use of multispectral scanner images for assessment of hydrothermal alteration in the Marysvale, Utah, mining area , 1982 .

[65]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .

[66]  Y. Ninomiya,et al.  Corrigendum to “Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data” [Remote Sensing of Environment 99(1–2):127–139 (2005), ASTER special issue] , 2006 .

[67]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[68]  Í. Vitorello,et al.  Use of ASTER short-wave infrared bands for the spectral discrimination of hydrothermally altered-materials: evaluation in a tropical savannah environment , 2005 .

[69]  L. Rowan,et al.  Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms , 2006 .

[70]  Robert J. Stern,et al.  Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies , 2003 .