Improved superconducting qubit coherence using titanium nitride
暂无分享,去创建一个
Jay M. Gambetta | Jerry M. Chow | Matthias Steffen | D. P. Pappas | David W. Abraham | J. Gambetta | J. Chow | M. Steffen | D. Abraham | J. Gao | A. Córcoles | G. Keefe | M. Rothwell | M. Vissers | D. Pappas | M. Sandberg | J. Chang | J. Chang | M. R. Vissers | A. D. Corcoles | M. Sandberg | J. Gao | M. B. Rothwell | G. A. Keefe | J. Chang
[1] Y. Pashkin,et al. Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.
[2] S. Girvin,et al. Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.
[3] Jonas Zmuidzinas,et al. Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators , 2008, 0802.4457.
[4] S. Girvin,et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.
[5] J. Gambetta,et al. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.
[6] M. Weides,et al. Improving the Coherence Time of Superconducting Coplanar Resonators , 2009, 0909.0547.
[7] Clare C. Yu,et al. Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.
[8] Antonio Corcoles,et al. Protecting superconducting qubits from radiation , 2011 .
[9] S. Girvin,et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.
[10] E. Lucero,et al. Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.
[11] T. Klapwijk,et al. Strongly disordered TiN and NbTiN s-wave superconductors probed by microwave electrodynamics. , 2012, Physical review letters.
[12] L Frunzio,et al. High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity. , 2010, Physical review letters.
[13] K. D. Irwin,et al. A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics , 2012, 1208.0871.
[14] M. Weides,et al. Etch induced microwave losses in titanium nitride superconducting resonators , 2012, 1205.3153.
[15] M. Weides,et al. Long-lived, radiation-suppressed superconducting quantum bit in a planar geometry , 2012, 1211.2017.
[16] Michael E. Tobar,et al. High Q-factor sapphire whispering gallery mode microwave resonator at single photon energies and millikelvin temperatures , 2011, 1103.6094.
[17] Erik Lucero,et al. Surface loss simulations of superconducting coplanar waveguide resonators , 2011, 1107.4698.
[18] D. DiVincenzo,et al. Quantum information storage using tunable flux qubits , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[19] R. J. Schoelkopf,et al. Improving the quality factor of microwave compact resonators by optimizing their geometrical parameters , 2011, 1204.0742.
[20] J. Gambetta,et al. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.
[21] M. Steffen,et al. Low Loss Superconducting Titanium Nitride Coplanar Waveguide Resonators , 2010, 1007.5096.