Feasible parameter set for linear models with bounded errors in all variables

Abstract When all observed variables of a model are affected by noise, parameter estimation is known as the errors in variables problem. While parameter bounding methods and algorithms have been extensively developed in the case of exactly known regressor variables, little attention has been paid to the bounded errors-in-variables problem. In this paper, a formal proof of a previous result on the description of the feasible parameter region for linear models in the presence of bounded errors in all variables is given. Topological features of the feasible parameter region, such as convexity and connectedness, are also discussed.

[1]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[2]  E. Walter,et al.  Exact recursive polyhedral description of the feasible parameter set for bounded-error models , 1989 .

[3]  V. Broman,et al.  A compact algorithm for the intersection and approximation of N -dimensional polytopes , 1990 .

[4]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[5]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[6]  Sylviane Gentil,et al.  Reformulation of parameter identification with unknown-but-bounded errors , 1988 .

[7]  Gustavo Belforte,et al.  Identification, structure selection and validation of uncertain models with set-membership error description , 1990 .

[8]  Torsten Söderström,et al.  Identification of stochastic linear systems in presence of input noise , 1981, Autom..

[9]  M. Milanese,et al.  Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .

[10]  J. Norton Recursive computation of inner bounds for the parameters of linear models , 1989 .

[11]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[12]  M. Milanese,et al.  Optimal inner bounds of feasible parameter set in linear estimation with bounded noise , 1991 .

[13]  J. P. Norton,et al.  Identification and Application of Bounded-Parameter Models , 1985 .

[14]  E. Walter,et al.  Estimation of parameter bounds from bounded-error data: a survey , 1990 .

[15]  B. Barmish,et al.  The propagation of parametric uncertainty via polytopes , 1979 .

[16]  J. P. Norton,et al.  Parameter-bounding identification algorithms for bounded-noise records , 1988 .

[17]  J. P. Norton,et al.  Fast and robust algorithm to compute exact polytope parameter bounds , 1990 .

[18]  Vito Cerone,et al.  Parameter Bounding in Armax Models from Records with Bounded Errors in Variables , 1991 .

[19]  P. Kovanic,et al.  A new theoretical and algorithmical basis for estimation, identification and control , 1986, Autom..

[20]  J. P. Norton,et al.  Identification and application of bounded-parameter models , 1985, Autom..

[21]  Bonaventure Intercontinental,et al.  ON DECISION AND CONTROL , 1985 .

[22]  R. Tempo,et al.  Optimality of central and projection algorithms for bounded uncertainty , 1986 .

[23]  J. Norton Identification of parameter bounds for ARMAX models from records with bounded noise , 1987 .

[24]  J. Norton,et al.  Parameter-Bounding Algorithms for Linear Errors in Variables Models , 1992 .

[25]  Sylviane Gentil,et al.  Recursive membership estimation for output-error models , 1990 .

[26]  Y. A. Merkuryev,et al.  Identification of objects with unknown bounded disturbances , 1989 .

[27]  Bahram Shafai,et al.  Interval identification of linear systems with bounded errors in both input and output variables , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.