Heat and Mass Transfer in Fluids with Nanoparticle Suspensions

Publisher Summary This chapter presents a discussion on heat and mass transfer in fluids with nanoparticle suspensions. The fundamental laws of thermodynamics govern the transfer of heat and state that when a temperature gradient exists in a body, there is an energy transfer from the high-temperature region to the low-temperature region or from a region of high potential to a lower energy state. The effective thermal conductivity of nanoparticle suspensions is being studied both experimentally and theoretically. The experimental results have identified several areas in which there is a significant deviation from the theories developed to predict the effective thermal conductivity of micro- or millimeter-size particle suspensions. However, because the experimental data are limited, theoretical studies have not as yet been verified to the extent that they can provide the basis for a well-defined set of equations that could inform subsequent experimental research. The chapter presents various techniques for manufacturing ultrafine particles with unique physical and chemical properties. The chapter also presents a graphical representation of the thermal conductivity as a function of volume fraction of Al 2 O 3 powders in different fluids. The chapter tabulates the effective transport coefficient of different disperse systems and discusses the development of effective thermal conductivity equations. The chapter concludes with a discussion on the effects of the Brownian motion coupled with thermal phoresis.

[1]  Effective conductivity of composites containing spheroidal inclusions: Comparison of simulations with theory , 1993 .

[2]  Jessica Gorman Nanofluid Flow: Detergents may benefit from new insight , 2003 .

[3]  G. Batchelor,et al.  Transport Properties of Two-Phase Materials with Random Structure , 1974 .

[4]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[5]  N. Dimitrijević,et al.  Colloidal semiconductors as photocatalysts for solar energy conversion , 1990 .

[6]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[7]  W. D. Knight,et al.  Quantum size effect in copper: NMR in small particles , 1975 .

[8]  D. Hasselman,et al.  Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance , 1987 .

[9]  R. Prasher,et al.  Thermal conductivity of nanoscale colloidal solutions (nanofluids). , 2005, Physical review letters.

[10]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[11]  D. Tanner,et al.  Far-infrared absorption in small metallic particles , 1975 .

[12]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[13]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[14]  Richard Phillips Feynman,et al.  Infinitesimal machinery , 1993 .

[15]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[16]  G. Batchelor,et al.  Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results , 1982, Journal of Fluid Mechanics.

[17]  Markus Kraft,et al.  An efficient stochastic algorithm for simulating Nano-particle dynamics , 2002 .

[18]  A. Isaev,et al.  The hydromechanics of suspensions , 1989 .

[19]  Leroy S. Fletcher,et al.  Effective Thermal Conductivity Within Packed Beds of Spherical Particles , 1989 .

[20]  Q. Xue Model for effective thermal conductivity of nanofluids , 2003 .

[21]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[22]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[23]  Salvatore Torquato,et al.  Effective conductivity of suspensions of hard spheres by Brownian motion simulation , 1991 .

[24]  R. Feynman There's plenty of room at the bottom , 1999 .

[25]  G. Batchelor Sedimentation in a dilute dispersion of spheres , 1972, Journal of Fluid Mechanics.

[26]  R. W. Gammon,et al.  Experimental evidence for microscopic chaos , 1998, Nature.

[27]  Avtar Singh Ahuja,et al.  Augmentation of heat transport in laminar flow of polystyrene suspensions. II. Analysis of the data , 1975 .

[28]  Jan Huisken,et al.  Optical levitation of absorbing particles with a nominally Gaussian laser beam. , 2002, Optics letters.

[29]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[30]  Li Shi,et al.  Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device , 2003 .

[31]  A. Nagashima,et al.  ABSOLUTE MEASUREMENT OF THE THERMAL CONDUCTIVITY OF ELECTRICALLY CONDUCTING LIQUIDS BY THE TRANSIENT HOT-WIRE METHOD (THERMAL CONDUCTIVITY OF AN AQUEOUS NaCl SOLUTION AT HIGH PRESSURE). , 1981 .

[32]  S. Maruyama A MOLECULAR DYNAMICS SIMULATION OF HEAT CONDUCTION OF A FINITE LENGTH SINGLE-WALLED CARBON NANOTUBE , 2003 .

[33]  N. Dimitrijević,et al.  Picosecond charge transfer processes in ultrasmall CdS and CdSe semiconductor particles , 1990 .

[34]  Ivar Giaever,et al.  Superconductivity of small tin particles measured by tunneling , 1968 .

[35]  W. Roetzel,et al.  Natural convection of nano-fluids , 2003 .

[36]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[37]  D. E. Rosner,et al.  Effects of heat transfer on the dynamics and transport of small particles suspended in gases , 1992 .

[38]  Stephen U. S. Choi,et al.  Application of metallic nanoparticle suspensions in advanced cooling systems , 1996 .

[39]  W. Wang,et al.  Dielectric properties of GaN nanoparticles , 2001 .

[40]  R. Buhrman,et al.  Fluctuation diamagnetism in a "zero-dimensional" superconductor , 1973 .

[41]  L. Barbu-Tudoran,et al.  Effects of different application parameters on penetration characteristics and arterial vessel wall integrity after local nanoparticle delivery using a porous balloon catheter. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[42]  R. Cavicchi,et al.  Coulomb Suppression of Tunneling Rate from Small Metal Particles , 1984 .

[43]  Alokmay Datta,et al.  Observation of molecular layering in thin liquid films using X-Ray reflectivity , 1999 .

[44]  Schoen Quantum shot noise in tunnel junctions. , 1983, Physical review. B, Condensed matter.

[45]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[46]  A. Acrivos,et al.  ON THE EFFECTIVE THERMAL CONDUCTIVITY OF DILUTE DISPERSIONS: HIGHLY CONDUCTING INCLUSIONS OF ARBITRARY SHAPE , 1973 .

[47]  Shih‐Yuan Lu,et al.  Effective thermal conductivity of composites containing spheroidal inclusions , 1990 .

[48]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[49]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[50]  L. G. Leal,et al.  ON THE EFFECTIVE CONDUCTIVITY OF A DILUTE SUSPENSION OF SPHERICAL DROPS IN THE LIMIT OF LOW PARTICLE PECLET NUMBER , 1973 .

[51]  T. Ho Effect of Quantum Voltage Fluctuations on the Resistance of Normal Junctions , 1983 .

[52]  G. Peterson,et al.  Effective thermal conductivity of sintered heat pipe wicks , 1986 .

[53]  W. Roetzel,et al.  Conceptions for heat transfer correlation of nanofluids , 2000 .

[54]  S. Phillpot,et al.  Two regimes of thermal resistance at a liquid-solid interface , 2003 .

[55]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[56]  Charles W. Tobias,et al.  Conductivities in Emulsions , 1961 .

[57]  Shih-Yuan Lu,et al.  Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity , 1996 .

[58]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[59]  P. Ball,et al.  Science at the atomic scale , 1992, Nature.

[60]  A. Hattori,et al.  Natural convection of water-fine particle suspension in a rectangular vessel heated and cooled from opposing vertical walls (classification of the natural convection in the case of suspension with a narrow-size distribution) , 2001 .

[61]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[62]  P. Gaspard,et al.  Tracking a colloidal particle for the measurement of dynamic entropies , 2001 .

[63]  Pawel Keblinski,et al.  Role of thermal boundary resistance on the heat flow in carbon-nanotube composites , 2004 .

[64]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[65]  Avtar Singh Ahuja,et al.  Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results , 1975 .

[66]  A. Nagy,et al.  Aerosol particle size determination using a photon correlation laser doppler anemometer , 1996 .

[67]  Fei Ai,et al.  Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid , 2002 .

[68]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[69]  J. Brady,et al.  The effective conductivity of random suspensions of spherical particles , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[70]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[71]  J. Brady,et al.  Dynamic simulation of hydrodynamically interacting suspensions , 1988, Journal of Fluid Mechanics.

[72]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[73]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[74]  Gang Chen,et al.  Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles , 1996 .

[75]  V. Novotny,et al.  Thermodynamic lattice and electronic properties of small particles , 1973 .

[76]  Xiaofeng Peng,et al.  Research on the heat-conduction enhancement for liquid with nano-particle suspensions , 2002 .

[77]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[78]  Salvatore Torquato,et al.  Effective electrical conductivity of two‐phase disordered composite media , 1985 .

[79]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[80]  W. Roetzel,et al.  Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity , 1995 .

[81]  Mansoo Choi,et al.  Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities , 2003 .

[82]  James R. Brock,et al.  On the theory of thermal forces acting on aerosol particles , 1962 .

[83]  Richard P. Feynman There's plenty of room at the bottom [data storage] , 1992, Journal of Microelectromechanical Systems.

[84]  S. Torquato,et al.  Determination of the effective conductivity of heterogeneous media by Brownian motion simulation , 1990 .

[85]  P. Wyder,et al.  Magnetic Moment of Small Indium Particles in the Quantum Size-Effect Regime , 1973 .

[86]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids , 1924 .

[87]  Minoru Taya,et al.  Effective thermal conductivity of a misoriented short fiber composite , 1985 .

[88]  H. Gleiter Theory of grain boundary migration rate , 1969 .

[89]  G. Batchelor,et al.  Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory , 1982, Journal of Fluid Mechanics.

[90]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[91]  Roger T. Bonnecaze,et al.  A method for determining the effective conductivity of dispersions of particles , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[92]  R. W. O'Brien,et al.  A method for the calculation of the effective transport properties of suspensions of interacting particles , 1979, Journal of Fluid Mechanics.

[93]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[94]  Robert H. Davis The effective thermal conductivity of a composite material with spherical inclusions , 1986 .

[95]  K. Khanafer,et al.  BUOYANCY-DRIVEN HEAT TRANSFER ENHANCEMENT IN A TWO-DIMENSIONAL ENCLOSURE UTILIZING NANOFLUIDS , 2003 .

[96]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[97]  Z. Pászti,et al.  Modeling Gold Nanoparticles: Morphology, Electron Structure, and Catalytic Activity in CO Oxidation† , 2000 .

[98]  A. Acrivos,et al.  ON THE EFFECTIVE THERMAL CONDUCTIVITY OF DILUTE DISPERSIONS GENERAL THEORY FOR INCLUSIONS OF ARBITRARY SHAPE , 1973 .

[99]  M. Haw Colloidal suspensions, Brownian motion, molecular reality: a short history , 2002 .

[100]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[101]  R. Buhrman,et al.  Ultrafine metal particles , 1976 .

[102]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[103]  Salvatore Torquato,et al.  Efficient simulation technique to compute effective properties of heterogeneous media , 1989 .

[104]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[105]  P. F. Vassallo,et al.  Pool boiling heat transfer experiments in silica–water nano-fluids , 2004 .

[106]  G. Peterson,et al.  Effect of Morphology of Carbon Nanotubes on Thermal Conductivity Enhancement of Nanofluids , 2007 .

[107]  William Fuller Brown,et al.  Solid Mixture Permittivities , 1955 .

[108]  J. H. Kim,et al.  Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer , 2003 .

[109]  S. Advani,et al.  Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension , 1995 .

[110]  R. Powell,et al.  Thermal conductivities of liquids: new determinations for seven liquids and appraisal of existing values , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[111]  Joseph B. Keller,et al.  Conductivity of a Medium Containing a Dense Array of Perfectly Conducting Spheres or Cylinders or Nonconducting Cylinders , 1963 .

[112]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[113]  Zhou Danna,et al.  Heat transfer enhancement of copper nanofluid with acoustic cavitation , 2004 .