THE POTENTIAL OF BIOMASS FUELS IN THE CONTEXT OF GLOBAL CLIMATE CHANGE: Focus on Transportation Fuels

▪ Abstract An ultimate limit on the extent that biomass fuels can be used to displace fossil transportation fuels, and their associated emissions of CO2, will be the land area available to produce the fuels and the efficiencies by which solar radiation can be converted to useable fuels. Currently, the Brazil cane-ethanol system captures 33% of the primary energy content in harvested cane in the form of ethanol. The US corn-ethanol system captures 54% of the primary energy of harvested corn kernels in the form of ethanol. If ethanol is used to substitute for gasoline, avoided fossil fuel CO2 emissions would equal those of the substituted amount minus fossil emissions incurred in producing the cane- or corn-ethanol. In this case, avoided emissions are estimated to be 29% of harvested cane and 14% of harvested corn primary energy. Unless these efficiencies are substantially improved, the displacement of CO2 emissions from transportation fuels in the United States is unlikely to reach 10% using domestic biofu...

[1]  Bruno Fabiano,et al.  Experimental study of hydrogen kinetics from agroindustrial by-product: Optimal conditions for production and fuel cell feeding , 1998 .

[2]  K. Ch. A. M. Luyben,et al.  Ethanol production in an integrated process of fermentation and ethanol recovery by pervaporation , 1992 .

[3]  K. Ch. A. M. Luyben,et al.  Integration of pervaporation and continuous butanol fermentation with immobilized cells: II: Mathematical modelling and simulations , 1991 .

[4]  A. Kozaki,et al.  Photorespiration protects C3 plants from photooxidation , 1996, Nature.

[5]  Gregg Marland,et al.  Biomass fuels and forest-management strategies: How do we calculate the greenhouse-gas emissions benefits? , 1995 .

[6]  Jeremy Woods,et al.  Biomass for energy: supply prospects. , 1993 .

[7]  Guido Zacchi,et al.  Simultaneous saccharification and fermentation of steam-pretreated willow , 1995 .

[8]  J. Moreira,et al.  The alcohol program , 1999 .

[9]  R. N. Schock,et al.  Hydrogen as a future transportation fuel , 1996 .

[10]  Cecilia Laluce CURRENT ASPECTS OF FUEL ETHANOL-PRODUCTION IN BRAZIL , 1991 .

[11]  E. Becker Microalgae: Biotechnology and Microbiology , 1994 .

[12]  Gregg Marland,et al.  CO2 emissions from the production and combustion of fuel ethanol from corn , 1991 .

[13]  S. Duff,et al.  Simultaneous saccharification and extractive fermentation of cellulosic substrates , 2000, Biotechnology and bioengineering.

[14]  John R. Benemann,et al.  The Technology of Biohydrogen , 1998 .

[15]  Donald Renn,et al.  Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects , 1997 .

[16]  James A. Duffield,et al.  Estimating the net energy balance of corn ethanol. Agricultural economic report , 1995 .

[17]  J. Peixoto,et al.  Physics of climate , 1992 .

[18]  Lynn L. Wright,et al.  Biomass energy production in the United States: an overview , 1994 .

[19]  P H Abelson Renewable liquid fuels. , 1995, Science.

[20]  Robin L. Graham,et al.  An analysis of the potential land base for energy crops in the conterminous United States , 1994 .

[21]  B. Saha,et al.  Pretreatment and enzymatic saccharification of corn fiber , 1999, Applied biochemistry and biotechnology.

[22]  G. Philippidis,et al.  Limiting factors in the simultaneous saccharification and fermentation process for conversion of cellulosic biomass to fuel ethanol , 1995 .

[23]  Gregg Marland,et al.  Forest/Biomass Based Mitigation Strategies: Does the Timing of Carbon Reductions Matter? , 1997, Economics of Carbon Sequestration in Forestry.

[24]  Y. Asada,et al.  Enhanced hydrogen production by a mutant of Rhodobacter sphaeroides having an altered light-harvesting system. , 1999, Journal of bioscience and bioengineering.

[25]  C. Peterson,et al.  CARBON CYCLE FOR RAPESEED OIL BIODIESEL FUELS , 1998 .

[26]  Ulf R. Boman,et al.  Integrated biomass energy systems and emissions of carbon dioxide , 1997 .

[27]  David Pimentel,et al.  Ethanol fuels: Energy security, economics, and the environment , 1991 .

[28]  K. Ch. A. M. Luyben,et al.  Integration of pervaporation and continuous butanol fermentation with immobilized cells. I: Experimental results , 1991 .

[29]  P. Neushul Energy from marine biomass: the historical record , 1987 .

[30]  Thomas A. Milne,et al.  Pyrolysis oils from biomass : producing, analyzing, and upgrading , 1988 .

[31]  J. Moreira,et al.  Energy Balance for Ethyl Alcohol Production from Crops , 1978, Science.

[32]  Yasuo Asada,et al.  Biotechnological hydrogen production" research for efficient light energy conversion , 1999 .

[33]  Michio Hada,et al.  Reduction of carbon dioxide emission from flue gas with microalgae cultivation , 1992 .

[34]  Marshall A. Wise,et al.  ADVANCED ENERGY TECHNOLOGIES AND CLIMATE CHANGE: AN ANALYSIS USING THE GLOBAL CHANGE ASSESSMENT MODEL (GCAM) , 1994 .

[35]  Melvin Calvin,et al.  The Path of Carbon in Photosynthesis: The carbon cycle is a tool for exploring chemical biodynamics and the mechanism of quantum conversion , 1962 .

[36]  Morgan Fröling,et al.  Hydrocarbons in Biogas from Household Solid Waste , 1998 .

[37]  Christopher I. Marrison,et al.  Economic scales for first-generation biomass-gasifier/gas turbine combined cycles fueled from energy plantations , 1996 .

[38]  R. K. Downey,et al.  Oil Crops of the World , 1989 .

[39]  Henning Rodhe,et al.  A Comparison of the Contribution of Various Gases to the Greenhouse Effect , 1990, Science.

[40]  J. Lay,et al.  Feasibility of biological hydrogen production from organic fraction of municipal solid waste , 1999 .

[41]  L. Greene EHPnet: United Nations Framework Convention on Climate Change , 2000, Environmental Health Perspectives.

[42]  Xavier Dubuisson,et al.  Energy and CO2 balances in different power generation routes using wood fuel from short rotation coppice , 1998 .

[43]  S. K. Ribeiro,et al.  AVOIDING EMISSIONS OF CARBON DIOXIDE THROUGH THE USE OF FUELS DERIVED FROMSUGAR CANE , 1998 .

[44]  Masahiro Uchida,et al.  Special Articles on Chemistry and Technology for Recycling Inorganic and Organic Materials. Process Development of Ethanol Production from Lignocellulosic Wastes using Thermophilic Anaerobes. , 1992 .

[45]  I. Angelidaki,et al.  A comprehensive model of anaerobic bioconversion of complex substrates to biogas , 1999, Biotechnology and bioengineering.

[46]  A. Wheals,et al.  Fuel ethanol after 25 years. , 1999, Trends in biotechnology.

[47]  Shinji Suzuki,et al.  Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler , 1993 .

[48]  Candace H. Haigler Biosynthesis and Biodegradation of Cellulose , 1990 .

[49]  Daniel Montané,et al.  Hydrogen from Biomass: Steam Reforming of Model Compounds of Fast-Pyrolysis Oil , 1999 .

[50]  Delwen Samuel,et al.  Investigation of Ancient Egyptian Baking and Brewing Methods by Correlative Microscopy , 1996, Science.

[51]  Jonathan R. Mielenz,et al.  Commercialization of biomass ethanol technology , 1996 .

[52]  A. Bridgwater The technical and economic feasibility of biomass gasification for power generation , 1995 .

[53]  Daniel Montané,et al.  Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions , 1996 .

[54]  I. S. Pretorius,et al.  Engineering yeast for efficient cellulose degradation , 1998, Yeast.

[55]  Roberta J. Nichols,et al.  Fuel Ethanol from Cellulosic Biomass , 1991 .

[56]  D. Pimentel,et al.  Renewable Energy: Economic and Environmental Issues , 1994, BioScience.

[57]  E. C. Clausen,et al.  BIOCONVERSION OF SYNTHESIS GAS INTO LIQUID OR GASEOUS FUELS , 1992 .

[58]  Mario Giampietro,et al.  Feasibility of Large-Scale Biofuel Production , 1997 .

[59]  Robert H. Borgwardt,et al.  Biomass and natural gas as co-feedstock for reduction of fuel for fuel-cell vehicles , 1997 .

[60]  Lee R. Lynd,et al.  Overview and evaluation of fuel ethanol from cellulosic biomass , 1996 .

[61]  S P Potter,et al.  Energy supply. , 1973, Science.

[62]  F. Nativel,et al.  Ethanol production from lignocellulosics: Large scale experimentation and economics , 1994 .

[63]  T. Elliott,et al.  Brazilian biomass power demonstration project , 1994 .

[64]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[65]  Charles E. Wyman,et al.  Ethanol from lignocellulosic biomass: Technology, economics, and opportunities , 1994 .

[66]  Bruce E. Dale,et al.  Ethanol production from enzymatic hydrolysates of AFEX-treated coastal bermudagrass and switchgrass , 1995 .

[67]  John S. Cundiff,et al.  Energy analysis of ethanol production from sweet sorghum , 1992 .

[68]  V. Gunaseelan Anaerobic digestion of biomass for methane production: A review , 1997 .

[69]  J. Duffield,et al.  Potential biodiesel markets and their economic effects on the agricultural sector of the United States. , 1999 .

[70]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[71]  G. Marland,et al.  The role of forest and bioenergy strategies in the global carbon cycle , 1996 .

[72]  Ching Hua Lee,et al.  Conversion of biomass to ethanol , 1995 .

[73]  Guido Zacchi,et al.  Cost Analysis of Ethanol Production from Willow Using Recombinant Escherichia coli , 1994, Biotechnology progress.

[74]  Lynn L. Wright,et al.  Editorial dedicated feedstock supply systems , 1994 .

[75]  Philippe Soucaille,et al.  Regulation of solvent production in Clostridium acetobutylicum , 1998 .

[76]  Eric D. Larson,et al.  Advanced gasification-based biomass power generation , 1993 .

[77]  Moniruzzaman,et al.  Metabolic engineering of bacteria for ethanol production , 1998, Biotechnology and bioengineering.

[78]  Michael Jerry Antal,et al.  Carbon-Catalyzed Gasification of Organic Feedstocks in Supercritical Water† , 1996 .

[79]  C. D. Keeling,et al.  Atmospheric CO 2 records from sites in the SIO air sampling network , 1994 .

[80]  J. Ehleringer,et al.  Climate change and the evolution of C(4) photosynthesis. , 1991, Trends in ecology & evolution.

[81]  V. Bisaria,et al.  Simultaneous bioconversion of cellulose and hemicellulose to ethanol. , 1998, Critical reviews in biotechnology.

[82]  G. Zacchi,et al.  A techno-economical comparison of three processes for the production of ethanol from pine. , 1995 .

[83]  R. Boddey 'Green' energy from sugar cane. , 1993 .

[84]  R. M. Martin,et al.  Simultaneous production of ethanol and kraft pulp from pine (Pinus radiata) using steam explosion , 1995 .

[85]  Gordon Conway,et al.  Feeding the world in the twenty-first century , 1999, Nature.

[86]  L. Lynd,et al.  Likely features and costs of mature biomass ethanol technology , 1996 .

[87]  Stefano Consonni,et al.  Combined biomass and black liquor gasifier/gas turbine cogeneration at pulp and paper mills , 1998 .

[88]  John S. Lewis,et al.  Book Review: The chemical evolution of the atmosphere and oceans. By Heinrich D. Holland. Princeton Univ. Press, Princeton, N.J., 1984. pp., pb 24.50, hb 75.00 , 1985 .

[89]  J. Edmonds,et al.  Agriculture, land use, and commercial biomass energy , 1996 .

[90]  L. Kazmerski,et al.  CHAPTER 15 – INTRODUCTION TO PHOTOVOLTAICS: PHYSICS, MATERIALS AND TECHNOLOGY , 1980 .

[91]  P. L. Spath,et al.  Life cycle assessment of a biomass gasification combined-cycle power system , 1997 .

[92]  M. Calvin The path of carbon in photosynthesis. , 1948, Harvey lectures.

[93]  J. Goldemberg,et al.  The Brazilian fuel-alcohol program , 1993 .

[94]  J. Kingston,et al.  Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya , 1994, Nature.

[95]  K. Stȧhl,et al.  IGCC power plant for biomass utilisation, Värnamo, Sweden , 1997 .

[96]  Stanley R. Bull,et al.  The U.S. department of energy biofuels research program , 1991 .

[97]  F. A. Bazzaz,et al.  Plant life in a CO2 - rich world , 1992 .

[98]  R. Houghton The worldwide extent of land-use change , 1994 .

[99]  Hans-Holger Rogner,et al.  Energy Resources and Conversion Technologies for the 21st Century , 1998 .

[100]  J. Goudriaan,et al.  A simulation study for the global carbon cycle, including man's impact on the biosphere , 1984 .

[101]  W. J. Groot,et al.  Economic feasibility of the production of iso-propanol-butanol-ethanol fuels from whey permeate , 1985 .

[102]  R. L. Bain,et al.  Ethanol and methanol from cellulosic biomass , 1993 .

[103]  L. Lynd,et al.  Fuel Ethanol from Cellulosic Biomass , 1991, Science.

[104]  Leif Gustavsson,et al.  Regional production and utilization of biomass in Sweden , 1996 .

[105]  P. Dürre,et al.  New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation , 1998, Applied Microbiology and Biotechnology.

[106]  Henry Kelly,et al.  Renewable energy : sources for fuels and electricity , 1993 .

[107]  Anja Oasmaa,et al.  Characterization of biomass-based flash pyrolysis oils , 1998 .

[108]  Chiu-Yue Lin,et al.  Hydrogen production during the anaerobic acidogenic conversion of glucose , 1999 .

[109]  L. Wright Production technology status of woody and herbaceous crops , 1994 .

[110]  S. C. Davis Transportation Energy Databook: Edition 17 , 1997 .

[111]  Roger C. Prince,et al.  Excited-state redox potentials and the Z scheme of photosynthesis , 1985 .