Global Convergence of a Nonsmooth Newton Method for Control-State Constrained Optimal Control Problems

We investigate a nonsmooth Newton method for the numerical solution of optimal control problems subject to mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and nonsmooth equation in appropriate Banach spaces. This nonlinear and nonsmooth equation is solved by a nonsmooth Newton's method. We prove the global convergence and the locally superlinear convergence under certain regularity conditions. The globalized method is based on the minimization of the squared residual norm. Numerical examples for the Rayleigh problem conclude the article.

[1]  L. A. Li︠u︡sternik,et al.  Elemente der Funktionalanalysis , 1955 .

[2]  Kazimierz Malanowski,et al.  The Lagrange-Newton method for nonlinear optimal control problems , 1993, Comput. Optim. Appl..

[3]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[4]  K. Malanowski,et al.  Error bounds for euler approximation of a state and control constrained optimal control problem , 2000 .

[5]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[6]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[7]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[8]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[9]  Martin Grötschel,et al.  Online optimization of large scale systems , 2001 .

[10]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[11]  K. Malanowski On Normality of Lagrange Multipliers for State Constrained Optimal Control Problems , 2003 .

[12]  Kazimierz Malanowski,et al.  The Lagrange-Newton method for state constrained optimal control problems , 1995, Comput. Optim. Appl..

[13]  Helmut Maurer,et al.  Second-Order Sufficient Conditions for State-Constrained Optimal Control Problems , 2004 .

[14]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[15]  Helmut Maurer,et al.  Sensitivity analysis for parametric control problems with control-state constraints , 1996, Comput. Optim. Appl..

[16]  William W. Hager,et al.  The Dual Active Set Algorithm and Its Application to Linear Programming , 2002, Comput. Optim. Appl..

[17]  A. Fischer A special newton-type optimization method , 1992 .

[18]  V. Zeidan The Riccati Equation for Optimal Control Problems with Mixed State-Control Constraints: Necessity and Sufficiency , 1994 .

[19]  B. Kummer Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis , 1992 .

[20]  Houyuan Jiang Global Convergence Analysis of the Generalized Newton and Gauss-Newton Methods of the Fischer Burmeister Equation for the Complementarity Problem , 1999 .

[21]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[22]  Lucien W. Neustadt,et al.  Optimization: A Theory of Necessary Conditions , 1976 .

[23]  Matthias Gerdts A nonsmooth Newton's method for control-state constrained optimal control problems , 2008, Math. Comput. Simul..

[24]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[25]  B. Kummer NEWTON's METHOD FOR NON-DIFFERENTIABLE FUNCTIONS , 1988, Advances in Mathematical Optimization.

[26]  H. Maurer,et al.  Sensitivity Analysis and Real-Time Control of Parametric Optimal Control Problems Using Boundary Value Methods , 2001 .

[27]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[28]  M. Gerdts Direct Shooting Method for the Numerical Solution of Higher-Index DAE Optimal Control Problems , 2003 .