Straintronics-Based True Random Number Generator for High-Speed and Energy-Limited Applications

Random number generators are well known for their ubiquitous use in cryptography, statistical sampling, and computer simulations. In order to establish secure data transfers in cryptographic applications, these number generators need to reliably produce unpredictable numbers at a high rate. In this paper, by exploiting the metastability of the stressed straintronics (STR) device, we theoretically propose a proof-of-concept nanomagnetic-based scheme to generate random numbers at very high rates with low-energy overhead. The dynamic modeling of the device, including the Langevin thermal noise field, is discussed, and the effect of process variation on the energy barrier and reliability is analyzed. The device is interfaced with CMOS circuitry and simulated in the 65 nm technology. At 1 V supply level, the system can generate random numbers as fast as 510 MHz. The entire circuit, including the CMOS peripherals, consumes 12.5 uW at 100 MHz random number generation rate while dissipating merely 0.125 pJ/bit. By reducing the supply level to 0.5 V, the energy per bit can be reduced further to 19 fJ. Since the STR device can be placed on the top of the CMOS circuitry, the total area of the design is estimated to be 0.001 mm2.

[1]  Jing-Reng Huang,et al.  A chaos-based fully digital 120 MHz pseudo random number generator , 2004, The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 2004. Proceedings..

[2]  David Blaauw,et al.  16.3 A 23Mb/s 23pJ/b fully synthesized true-random-number generator in 28nm and 65nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[3]  Linda M. Engelbrecht Modeling spintronics devices in Verilog-A for use with industry-standard simulation tools , 2011 .

[4]  Piotr Zbigniew Wieczorek,et al.  Dual-Metastability Time-Competitive True Random Number Generator , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  David Blaauw,et al.  3 A 23 Mb / s 23 pJ / b Fully Synthesized True-Random-Number Generator in 28 nm and 65 nm CMOS , 2018 .

[6]  Alexandre Yakovlev,et al.  Statistical modelling of the variation in advanced process technologies using a multi-level partitioned response , 2008, IET Circuits Devices Syst..

[7]  J. Alvin Connelly,et al.  A noise-based IC random number generator for applications in cryptography , 2000 .

[8]  Piotr Zbigniew Wieczorek,et al.  An FPGA Implementation of the Resolve Time-Based True Random Number Generator With Quality Control , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Riccardo Rovatti,et al.  Implementation and Testing of High-Speed CMOS True Random Number Generators Based on Chaotic Systems , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Michiel Steyaert,et al.  A 500 mV 650 pW random number generator in 130 nm CMOS for a UWB localization system , 2010, 2010 Proceedings of ESSCIRC.

[11]  M. Luescher,et al.  A Portable High-quality Random Number Generator for Lattice Field Theory Simulations , 1993 .

[12]  G Grinstein,et al.  Coarse graining in micromagnetics. , 2003, Physical review letters.

[13]  J. Holleman,et al.  A 3 $\mu$W CMOS True Random Number Generator With Adaptive Floating-Gate Offset Cancellation , 2008, IEEE Journal of Solid-State Circuits.

[14]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[15]  H.-D. Wohlmuth,et al.  A 24-Gb/s 27 - 1 Pseudo Random Bit Sequence Generator IC in 0.13 μm Bulk CMOS , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[16]  W. Brown Thermal Fluctuations of a Single‐Domain Particle , 1963 .

[17]  Ramazan Yeniceri,et al.  True random bit generation with time-delay sampled-data feedback system , 2013 .

[18]  Dmitri E. Nikonov,et al.  Modeling and Design of Spintronic Integrated Circuits , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  A. Tagantsev,et al.  Fatigue of piezoelectric properties in Pb(Zr,Ti)O3 films , 1996 .

[20]  Pinaki Mazumder,et al.  Straintronics-Based Random Access Memory as Universal Data Storage Devices , 2015, IEEE Transactions on Magnetics.

[21]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[22]  Patricia J. Teller,et al.  Evaluation of IEEE 754 floating-point arithmetic compliance across a wide range of heterogeneous computers , 2007, TAPIA '07.

[23]  Himanshu Kaul,et al.  2.4 Gbps, 7 mW All-Digital PVT-Variation Tolerant True Random Number Generator for 45 nm CMOS High-Performance Microprocessors , 2012, IEEE Journal of Solid-State Circuits.

[24]  Weisheng Zhao,et al.  Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures , 2013, Nature Communications.

[25]  Alessandro Trifiletti,et al.  A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC , 2003, IEEE Trans. Computers.

[26]  Weisheng Zhao,et al.  Spin-MTJ based Non-volatile Flip-Flop , 2007, 2007 7th IEEE Conference on Nanotechnology (IEEE NANO).

[27]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[28]  Pinaki Mazumder,et al.  Straintronics: A leap toward ultimate energy efficiency of magnetic random access memories. , 2015, IEEE Nanotechnology Magazine.

[29]  Trevor Mudge,et al.  True Random Number Generator With a Metastability-Based Quality Control , 2008, IEEE J. Solid State Circuits.

[30]  Pinaki Mazumder,et al.  Straintronics-based magnetic tunneling junction: Dynamic and static behavior analysis and material investigation , 2014 .

[31]  Jon M. Slaughter,et al.  Magnetoresistive random access memory using magnetic tunnel junctions , 2003, Proc. IEEE.

[32]  Yukihiro Fujimoto,et al.  A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture , 1993 .

[33]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[34]  Tahir Ghani,et al.  Voltage induced magnetostrictive switching of nanomagnets: Strain assisted strain transfer torque random access memory , 2014 .

[35]  Shoji Ikeda,et al.  Transient Characteristic of Fabricated Magnetic Tunnel Junction (MTJ) Programmed with CMOS Circuit , 2009, IEICE Trans. Electron..

[36]  Jayasimha Atulasimha,et al.  Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing , 2011, 1101.2222.

[37]  Supriyo Bandyopadhyay,et al.  Experimental Clocking of Nanomagnets with Strain for Ultralow Power Boolean Logic. , 2014, Nano letters.

[38]  S. Chikazumi Physics of ferromagnetism , 1997 .

[39]  Benny Pinkas,et al.  Analysis of the Linux random number generator , 2006, 2006 IEEE Symposium on Security and Privacy (S&P'06).

[40]  H. Ohno,et al.  Fabrication of a Nonvolatile Full Adder Based on Logic-in-Memory Architecture Using Magnetic Tunnel Junctions , 2008 .

[41]  Sung-Chul Shin,et al.  Voltage control of magnetization easy-axes: a potential candidate for spin switching in future ultrahigh-density nonvolatile magnetic random access memory , 2004 .