Estimation for Discretely Observed Small Diffusions Based on Approximate Martingale Estimating Functions

We consider an asymptotically efficient estimator of the drift parameter for a multi-dimensional diffusion process with small dispersion parameter "e". In the situation where the sample path is observed at equidistant times "k"/"n", "k" = 0, 1, …, "n", we study asymptotic properties of an "M"-estimator derived from an approximate martingale estimating function as "e" tends to 0 and "n" tends to ∞ simultaneously. Copyright 2004 Board of the Foundation of the Scandinavian Journal of Statistics..

[1]  D. Florens-zmirou Approximate discrete-time schemes for statistics of diffusion processes , 1989 .

[2]  M. Sørensen,et al.  Martingale estimation functions for discretely observed diffusion processes , 1995 .

[3]  N. Yoshida Conditional expansions and their applications , 2003 .

[4]  Masayuki Uchida,et al.  Small-diffusion asymptotics for discretely sampled stochastic differential equations , 2003 .

[5]  Robert Azencott,et al.  Formule de Taylor stochastique et developpement asymptotique d’integrales de Feynmann , 1982 .

[6]  Jean Jacod,et al.  On the estimation of the diffusion coefficient for multi-dimensional diffusion processes , 1993 .

[7]  Mathieu Kessler,et al.  Computational Aspects Related to Martingale Estimating Functions for a Discretely Observed Diffusion , 2002 .

[8]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[9]  Valentine Genon-Catalot,et al.  Maximnm contrast estimation for diffusion processes from discrete observations , 1990 .

[10]  Yury A. Kutoyants,et al.  Identification of Dynamical Systems with Small Noise , 1994 .

[11]  N. Yoshida Estimation for diffusion processes from discrete observation , 1992 .

[12]  Asymptotic behavior of M-estimator and related random field for diffusion process , 1990 .

[13]  C. Laredo,et al.  A Sufficient Condition for Asymptotic Sufficiency of Incomplete Observations of a Diffusion Process , 1990 .

[14]  K. Taira Proof of Theorem 1.3 , 2004 .

[15]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[16]  N. Yoshida,et al.  Asymptotic expansion formulas for functionals of ε-Markov processes with a mixing property , 2004 .

[17]  Mathieu Kessler Estimation of an Ergodic Diffusion from Discrete Observations , 1997 .

[18]  N. Yoshida Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin-Watanabe , 1992 .