Estimation for Discretely Observed Small Diffusions Based on Approximate Martingale Estimating Functions
暂无分享,去创建一个
[1] D. Florens-zmirou. Approximate discrete-time schemes for statistics of diffusion processes , 1989 .
[2] M. Sørensen,et al. Martingale estimation functions for discretely observed diffusion processes , 1995 .
[3] N. Yoshida. Conditional expansions and their applications , 2003 .
[4] Masayuki Uchida,et al. Small-diffusion asymptotics for discretely sampled stochastic differential equations , 2003 .
[5] Robert Azencott,et al. Formule de Taylor stochastique et developpement asymptotique d’integrales de Feynmann , 1982 .
[6] Jean Jacod,et al. On the estimation of the diffusion coefficient for multi-dimensional diffusion processes , 1993 .
[7] Mathieu Kessler,et al. Computational Aspects Related to Martingale Estimating Functions for a Discretely Observed Diffusion , 2002 .
[8] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[9] Valentine Genon-Catalot,et al. Maximnm contrast estimation for diffusion processes from discrete observations , 1990 .
[10] Yury A. Kutoyants,et al. Identification of Dynamical Systems with Small Noise , 1994 .
[11] N. Yoshida. Estimation for diffusion processes from discrete observation , 1992 .
[12] Asymptotic behavior of M-estimator and related random field for diffusion process , 1990 .
[13] C. Laredo,et al. A Sufficient Condition for Asymptotic Sufficiency of Incomplete Observations of a Diffusion Process , 1990 .
[14] K. Taira. Proof of Theorem 1.3 , 2004 .
[15] L. Rogers. Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .
[16] N. Yoshida,et al. Asymptotic expansion formulas for functionals of ε-Markov processes with a mixing property , 2004 .
[17] Mathieu Kessler. Estimation of an Ergodic Diffusion from Discrete Observations , 1997 .
[18] N. Yoshida. Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin-Watanabe , 1992 .