Sensitivity analysis of longitudinal data with intermittent missing values

Abstract Several models for longitudinal data with nonrandom missingness are available. The selection model of Diggle and Kenward is one of these models. It has been mentioned by many authors that this model depends on untested modelling assumptions, such as the response distribution, from the observed data. So, a sensitivity analysis of the study’s conclusions for such assumptions is needed. The stochastic EM algorithm is proposed and developed to handle continuous longitudinal data with nonrandom intermittent missing values when the responses have non-normal distribution. This is a step in investigating the sensitivity of the parameter estimates to the change of the response distribution. The proposed technique is applied to real data from the International Breast Cancer Study Group.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Stuart R. Lipsitz,et al.  Analysis of longitudinal data with non‐ignorable non‐monotone missing values , 2002 .

[3]  G Molenberghs,et al.  Parametric models for incomplete continuous and categorical longitudinal data , 1999, Statistical methods in medical research.

[4]  M. Kenward Selection models for repeated measurements with non-random dropout: an illustration of sensitivity. , 1998, Statistics in medicine.

[5]  R. Jennrich,et al.  Unbalanced repeated-measures models with structured covariance matrices. , 1986, Biometrics.

[6]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[7]  M. Kenward,et al.  Informative dropout in longitudinal data analysis (with discussion) , 1994 .

[8]  Geert Molenberghs,et al.  Strategies to fit pattern-mixture models. , 2002, Biostatistics.

[9]  J W Hogan,et al.  Reparameterizing the Pattern Mixture Model for Sensitivity Analyses Under Informative Dropout , 2000, Biometrics.

[10]  Geert Molenberghs,et al.  Sensitivity Analysis of Continuous Incomplete Longitudinal Outcomes , 2003 .

[11]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[12]  Geert Molenberghs,et al.  Mastitis in diary cattle: local influence to assess sensitivity of the dropout process , 2001 .

[13]  Geert Molenberghs,et al.  Influence analysis to assess sensitivity of the dropout process , 2001 .

[14]  S. Lipsitz,et al.  Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable , 2001 .

[15]  D. Collett Modelling Binary Data , 1991 .

[16]  Michel Chavance,et al.  Sensitivity analysis of longitudinal normal data with drop‐outs , 2004, Statistics in medicine.

[17]  M. J. D. Powell,et al.  A Method for Minimizing a Sum of Squares of Non-Linear Functions Without Calculating Derivatives , 1965, Comput. J..

[18]  Ahmed M. Gad,et al.  Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm , 2006, Comput. Stat. Data Anal..

[19]  J. W. Akitt Function Minimisation Using the Nelder and Mead Simplex Method with Limited Arithmetic Precision: The Self Regenerative Simplex , 1977, Comput. J..

[20]  G Molenberghs,et al.  Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach , 2001, Biometrics.

[21]  R. Gelber,et al.  Quality of life measures for patients receiving adjuvant therapy for breast cancer: an international trial. The International Breast Cancer Study Group. , 1992, European journal of cancer.

[22]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[23]  Geert Molenberghs,et al.  A Local Influence Approach Applied to Binary Data from a Psychiatric Study , 2003, Biometrics.

[24]  Peter J. Diggle,et al.  Informative dropout in longitudinal data analysis. , 1994 .

[25]  R. Little Pattern-Mixture Models for Multivariate Incomplete Data , 1993 .

[26]  Geert Molenberghs,et al.  A local influence approach to sensitivity analysis of incomplete longitudinal ordinal data , 2001 .

[27]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[28]  J. Heckman The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models , 1976 .