Sensitivity to modulations of luminance and contrast in visual white noise: separate mechanisms with similar behaviour

[1]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[2]  T. Cornsweet,et al.  The staircrase-method in psychophysics. , 1962, The American journal of psychology.

[3]  G. B. Wetherill,et al.  SEQUENTIAL ESTIMATION OF POINTS ON A PSYCHOMETRIC FUNCTION. , 1965, The British journal of mathematical and statistical psychology.

[4]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[5]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[6]  J. Robson,et al.  Grating summation in fovea and periphery , 1978, Vision Research.

[7]  J. Daugman Two-dimensional spectral analysis of cortical receptive field profiles , 1980, Vision Research.

[8]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[9]  G. Legge A power law for contrast discrimination , 1981, Vision Research.

[10]  J. Robson,et al.  Discrimination at threshold: Labelled detectors in human vision , 1981, Vision Research.

[11]  Andrew C. Sleigh,et al.  Physical and Biological Processing of Images , 1983 .

[12]  H. Wilson Psychophysical Evidence for Spatial Channels , 1983 .

[13]  Wen-Hsiang Tsai,et al.  Automatic Chinese seal identification , 1984, Comput. Vis. Graph. Image Process..

[14]  Michael S. Landy,et al.  HIPS: A unix-based image processing system , 1984, Comput. Vis. Graph. Image Process..

[15]  M. Georgeson,et al.  Spatial selectivity of contrast adaptation: Models and data , 1984, Vision Research.

[16]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[17]  J. J. Koenderink,et al.  Contrast detection and detection of contrast modulation for noise gratings , 1985, Vision Research.

[18]  David R. Badcock,et al.  Detection of spatial beats: Non-linearity or contrast increment detection? , 1986, Vision Research.

[19]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[20]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[21]  N. Graham Visual Pattern Analyzers , 1989 .

[22]  David C. Burr,et al.  Receptive field properties of human motion detector units inferred from spatial frequency masking , 1989, Vision Research.

[23]  Leland S. Stone,et al.  Halftoning method for the generation of motion stimuli , 1989 .

[24]  P. Cavanagh,et al.  Motion: the long and short of it. , 1989, Spatial vision.

[25]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[26]  Jyrki Rovamo,et al.  Contrast sensitivity as a function of spatial frequency, viewing distance and eccentricity with and without spatial noise , 1992, Vision Research.

[27]  C L Baker,et al.  A processing stream in mammalian visual cortex neurons for non-Fourier responses. , 1993, Science.

[28]  A. Derrington,et al.  Discriminating the direction of second-order motion at short stimulus durations , 1993, Vision Research.

[29]  Jyrki Rovamo,et al.  Modelling the dependence of contrast sensitivity on grating area and spatial frequency , 1993, Vision Research.

[30]  Andrew T. Smith,et al.  Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision , 1994, Vision Research.

[31]  J. M. Foley,et al.  Human luminance pattern-vision mechanisms: masking experiments require a new model. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  A. T. Smith,et al.  Direction identification thresholds for second-order motion in central and peripheral vision. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  J A Solomon,et al.  Full-wave and half-wave processes in second-order motion and texture. , 1994, Ciba Foundation symposium.

[34]  T S Meese,et al.  Using the standard staircase to measure the point of subjective equality: A guide based on computer simulations , 1995, Perception & psychophysics.

[35]  G. Sperling,et al.  The functional architecture of human visual motion perception , 1995, Vision Research.

[36]  F. Kingdom,et al.  Sensitivity to orientation modulation in micropattern-based textures , 1995, Vision Research.

[37]  G. Sperling,et al.  Measuring the spatial frequency selectivity of second-order texture mechanisms , 1995, Vision Research.

[38]  J. Rovamo,et al.  The effect of noise check size and shape on grating detectability , 1996, Vision Research.

[39]  STANLEY A. KLEIN,et al.  The Adjacent Pixel Nonlinearity: Problems and Solutions , 1996, Vision Research.

[40]  2nd-order contrast discrimination , 1996 .

[41]  Binocular Rivalry in Half-Occluded Regions of Coloured Stereograms Where the Background is a Drifting Grating , 1997 .

[42]  S. Mann,et al.  Ciba Foundation Symposium , 1997 .

[43]  Entropy Masking , 1997 .

[44]  ANDREW T SMITH,et al.  Separate Detection of Moving Luminance and Contrast Modulations: Fact or Artifact? , 1997, Vision Research.

[45]  A. Johnston,et al.  First-order motion from contrast modulated noise? , 1997, Vision Research.

[46]  M. Georgeson,et al.  Does early non-linearity account for second-order motion? , 1999, Vision Research.

[47]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .