Energy Pathways for Sustainable Development

Chapter 17 explores possible transformational pathways of the future global energy system with the overarching aim of assessing the technological feasibility as well as the economic implications of meeting a range of sustainability objectives simultaneously. As such, it aims at the integration across objectives, and thus goes beyond earlier assessments of the future energy system that have mostly focused on either specific topics or single objectives.

[1]  D. Pinchbeck,et al.  Preparing for the Hydrogen Economy by Using the Existing Natural Gas System as a Catalyst , 2013 .

[2]  Keywan Riahi,et al.  Environmental Modeling and Methods for Estimation of the Global Health Impacts of Air Pollution , 2011, Environmental Modeling & Assessment.

[3]  Keywan Riahi,et al.  An integrated approach to energy sustainability , 2011 .

[4]  Sven Teske,et al.  Energy [R]evolution 2010—a sustainable world energy outlook , 2011 .

[5]  Leon E. Clarke,et al.  Role of renewable energy in climate mitigation: a synthesis of recent scenarios , 2011 .

[6]  Mark Z. Jacobson,et al.  Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies , 2011 .

[7]  Mark Z. Jacobson,et al.  Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials , 2011 .

[8]  Keywan Riahi,et al.  The relationship between short-term emissions and long-term concentration targets , 2011 .

[9]  P. E. Grohnheit,et al.  A global renewable energy system: A modelling exercise in ETSAP/TIAM , 2011 .

[10]  Thomas Bruckner,et al.  Mitigation potential and costs , 2011 .

[11]  André Faaij,et al.  Energy use, cost and CO 2 emissions of electric cars , 2011 .

[12]  Shilpa Rao,et al.  Emissions of air pollutants implied by global long-term energy scenarios , 2010 .

[13]  M. Dalton,et al.  Global demographic trends and future carbon emissions , 2010, Proceedings of the National Academy of Sciences.

[14]  Keywan Riahi,et al.  Do governments have the right mix in their energy R&D portfolios? , 2010 .

[15]  Aviel Verbruggen,et al.  Views on peak oil and its relation to climate change policy , 2010 .

[16]  Keywan Riahi,et al.  Determinants of Household Energy Consumption in India , 2010 .

[17]  Arnulf Grubler,et al.  The costs of the French nuclear scale-up: A case of negative learning by doing , 2010 .

[18]  Detlef P. van Vuuren,et al.  Bio-Energy Use and Low Stabilization Scenarios , 2010 .

[19]  Socrates Kypreos,et al.  The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs , 2010 .

[20]  Veerabhadran Ramanathan,et al.  The Copenhagen Accord for limiting global warming: Criteria, constraints, and available avenues , 2010, Proceedings of the National Academy of Sciences.

[21]  Joeri Rogelj,et al.  Copenhagen Accord pledges are paltry , 2010, Nature.

[22]  A. Faaij,et al.  Bioenergy revisited: Key factors in global potentials of bioenergy , 2010 .

[23]  G. Nemet,et al.  Implications of incorporating air-quality co-benefits into climate change policymaking , 2010 .

[24]  Brian C. O'Neill,et al.  The emissions gap report: Are the Copenhagen Accord pledges sufficient to limit global warming to 2° C or 1.5° C? , 2010 .

[25]  Bob van der Zwaan,et al.  An integrated assessment of climate change, air pollution, and energy security policy. , 2010 .

[26]  Keywan Riahi,et al.  Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets—Greenhouse gas mitigation scenarios for the 21st century , 2009 .

[27]  Stephan Schmid,et al.  Energy [R]evolution 2008—a sustainable world energy perspective , 2009 .

[28]  L. Clarke,et al.  International climate policy architectures: Overview of the EMF 22 International Scenarios , 2009 .

[29]  Detlef P. van Vuuren,et al.  Future bio-energy potential under various natural constraints , 2009 .

[30]  G. Toth,et al.  Potentials and Costs for Greenhouse Gas Mitigation in Annex I Countries: Methodology , 2009 .

[31]  M. Amann Air pollutants and greenhouse gases -- Options and benefits from co-control , 2009 .

[32]  Benjamin K. Sovacool,et al.  Competing Dimensions of Energy Security: An International Perspective , 2009 .

[33]  Charlie Wilson,et al.  Meta-analysis of Unit and Industry Level Scaling Dynamics in Energy Technologies and Climate Change Mitigation Scenarios , 2009 .

[34]  Jens Borken-Kleefeld,et al.  Emissions of Air Pollutants for the World Energy Outlook 2012 Energy Scenarios , 2009 .

[35]  Poul Houman Andersen,et al.  Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles , 2009 .

[36]  D. Vuuren,et al.  Indicators for energy security , 2009 .

[37]  J. Edmonds,et al.  Implications of Limiting CO2 Concentrations for Land Use and Energy , 2009, Science.

[38]  Jan Corfee-Morlot,et al.  Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern” , 2009, Proceedings of the National Academy of Sciences.

[39]  S. De,et al.  Impact of cofiring biomass with coal in power plants - A techno-economic assessment , 2009 .

[40]  Peter McGregor,et al.  Do increases in energy efficiency improve environmental quality and sustainability , 2009 .

[41]  Brian O'Neill,et al.  Mitigation implications of mid-century targets that preserve long-term climate policy options , 2009 .

[42]  Bob van der Zwaan,et al.  CO2 Capture and Storage with Leakage in an Energy-Climate Model , 2009 .

[43]  Michael Milligan,et al.  Large-Scale Wind Integration Studies in the United States: Preliminary Results , 2009 .

[44]  Valentina Bosetti,et al.  The Economics of Decarbonization – Results from the RECIPE model intercomparison , 2009 .

[45]  René M.J. Benders,et al.  Modeling Energy and Development: an Evaluation of Models and Concepts , 2008 .

[46]  Hans Auer,et al.  Conditions and costs for renewables electricity grid connection: Examples in Europe , 2008 .

[47]  Christopher Yang,et al.  Hydrogen and electricity: Parallels, interactions, and convergence , 2008 .

[48]  N. Höhne What Is Next after the Kyoto Protocol?: Assessment of Options for International Climate Policy Post 2012 , 2008 .

[49]  Kaarle Kupiainen,et al.  Scenarios of global anthropogenic emissions of air pollutants and methane until 2030 , 2007 .

[50]  Michel G.J. den Elzen,et al.  Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs , 2007 .

[51]  Frank Zeman,et al.  Energy and material balance of CO2 capture from ambient air. , 2007, Environmental science & technology.

[52]  N. Nakicenovic,et al.  Scenarios of long-term socio-economic and environmental development under climate stabilization , 2007 .

[53]  Brian C. O'Neill,et al.  Probabilistic temperature change projections and energy system implications of greenhouse gas emission scenarios , 2007 .

[54]  David Zilberman,et al.  Review of Environmental, Economic and Policy Aspects of Biofuels , 2007 .

[55]  Axel Lauer,et al.  The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment , 2007 .

[56]  E.A. DeMeo,et al.  Utility Wind Integration and Operating Impact State of the Art , 2007, IEEE Transactions on Power Systems.

[57]  Shonali Pachauri,et al.  An Energy Analysis of Household Consumption: Changing Patterns of Direct and Indirect Use in India , 2007 .

[58]  J. Goldemberg Ethanol for a Sustainable Energy Future , 2007, Science.

[59]  Timothy C. Green,et al.  Renewables and the grid: understanding intermittency , 2007 .

[60]  Peter Bergamaschi,et al.  Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations , 2007 .

[61]  J. Dutoit The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) , 2007 .

[62]  Paul S. Fischbeck,et al.  Quantifying siting difficulty : A case study of US transmission line siting , 2007 .

[63]  N. Nakicenovic,et al.  Issues related to mitigation in the long-term context , 2007 .

[64]  Fabian Wagner,et al.  Integrated Assessment of Air Pollution and Greenhouse Gases Mitigation in Europe , 2007, EnviroInfo.

[65]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[66]  Aie,et al.  Tracking Industrial Energy Efficiency and CO2 Emissions , 2007 .

[67]  Renato Baciocchi,et al.  Process design and energy requirements for the capture of carbon dioxide from air , 2006 .

[68]  Nebojsa Nakicenovic,et al.  Assessment of emissions scenarios revisited , 2006 .

[69]  Kristian Lindgren,et al.  Allocation of CO2 emission permits - economic incentives for emission reductions in developing countries. , 2006 .

[70]  J. Lamarque,et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone , 2006 .

[71]  Markus Amann,et al.  Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe , 2006 .

[72]  Malte Meinshausen,et al.  Meeting the EU 2°C climate target: global and regional emission implications , 2006 .

[73]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[74]  Michel G.J. den Elzen,et al.  Abatement costs of post-Kyoto climate regimes , 2005 .

[75]  Andreas Löschel,et al.  Climate Policy Beyond Kyoto: Quo Vadis? A Computable General Equilibrium Analysis Based on Expert Judgments , 2005 .

[76]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[77]  André Faaij,et al.  Cost and Co2-Emission Reduction of Biomass Cascading: Methodological Aspects and Case Study of SRF Poplar , 2005 .

[78]  Ibrahim Dincer,et al.  On hydrogen and hydrogen energy strategies. I: current status and needs , 2005 .

[79]  S. A. Sherif,et al.  Wind energy and the hydrogen economy—review of the technology , 2005 .

[80]  Daniel M. Kammen,et al.  Mortality and Greenhouse Gas Impacts of Biomass and Petroleum Energy Futures in Africa , 2005, Science.

[81]  A. Michaelowa,et al.  Issues and Options for the Post-2012 Climate Architecture – An Overview , 2005 .

[82]  Tess Dance,et al.  Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink matching , 2005 .

[83]  J. Sachs,et al.  Energy services for the Millennium Development Goals. , 2005 .

[84]  Z. Klimont,et al.  Primary Emissions of Submicron and Carbonaceous Particles in Europe and the Potential for their Control , 2004 .

[85]  Bollen Jc,et al.  How much does a 30% emissionreduction cost?Macroeconomic effects of post-Kyoto climate policy in 2020 , 2004 .

[86]  H. Groenenberg,et al.  Global Triptych: a bottom-up approach for the differentiation of commitments under the Climate Convention , 2004 .

[87]  Heinz Welsch,et al.  Contraction and Convergence of carbon emissions: an intertemporal multi-region CGE analysis , 2004 .

[88]  David Simpson,et al.  The Current Legislation" and the " Maximum Technically Feasible Reduction" cases for the CAFE baseline emission projections , 2004 .

[89]  W. G. van Arkel,et al.  Designing indicators of long-term energy supply security , 2004 .

[90]  Nebojsa Nakicenovic,et al.  Model Runs with MESSAGE in the Context of the Further Development of the Kyoto-Protocol , 2003 .

[91]  Reinhard Mechler,et al.  A Methodology to Estimate Changes in Statistical Life Expectancy Due to the Control of Particulate Matter in Air Pollution , 2002 .

[92]  Andrei P. Sokolov,et al.  Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations , 2002, Science.

[93]  H. Winkler,et al.  Comparing developing countries under potential carbon allocation schemes , 2002 .

[94]  Rahul Pandey Energy policy modelling: agenda for developing countries , 2002 .

[95]  T. Wigley,et al.  Interpretation of High Projections for Global-Mean Warming , 2001, Science.

[96]  M. D. den Elzen,et al.  Options for differentiation of future commitments in climate policy: how to realise timely participation to meet stringent climate goals? , 2001 .

[97]  David W. Keith,et al.  Climate Strategy with Co2 Capture from the Air , 2001 .

[98]  D. Greene,et al.  Energy efficiency and consumption — the rebound effect — a survey , 2000 .

[99]  Fatih Birol,et al.  Prices, technology development and the rebound effect , 2000 .

[100]  K. Riahi,et al.  Greenhouse Gas Emissions in a Dynamics-as-Usual Scenario of Economic and Energy Development , 2000 .

[101]  Keywan Riahi,et al.  Technology Dynamics and Greenhouse Gas Emissions Mitigation: A Cost Assessment , 2000 .

[102]  Nebojsa Nakicenovic,et al.  Global energy : perspectives , 1998 .

[103]  J. Robertson Factor four: Doubling wealth, halving resource use , 1997 .

[104]  H. Rogner AN ASSESSMENT OF WORLD HYDROCARBON RESOURCES , 1997 .

[105]  柴田 栄彦,et al.  急成長する世界の天然ガス市場--BP Statistical Review of World Energy′96に沿って , 1996 .

[106]  M. Robinson Addressing some key questions on finance and poverty , 1996 .

[107]  M. Strubegger,et al.  User's Guide for MESSAGE III , 1995 .

[108]  Nebojsa Nakicenovic,et al.  First- and Second-Law Efficiencies of the Global and Regional Energy Systems , 1995 .

[109]  A. Stirling Diversity and ignorance in electricity supply investment: Addressing the solution rather than the problem☆ , 1994 .

[110]  N. Nakicenovic,et al.  Long-term strategies for mitigating global warming☆ , 1993 .

[111]  A. Grubler International burden sharing in greenhouse gas reduction , 1992 .

[112]  Pierre Desprairies,et al.  World Energy Outlook , 1977 .