Ultrahigh-yield growth of GaN via halogen-free vapor-phase epitaxy

The material yield of Ga during GaN growth via halogen-free vapor-phase epitaxy (HF-VPE) was systematically investigated and found to be much higher than that obtained using conventional hydride VPE. This is attributed to the much lower process pressure and shorter seed-to-source distance, owing to the inherent chemical reactions and corresponding reactor design used for HF-VPE growth. Ultrahigh-yield GaN growth was demonstrated on a 4-in.-diameter sapphire seed substrate.

[1]  D. Nakamura,et al.  Macro-defect-free homoepitaxial GaN growth through halogen-free vapor-phase epitaxy on native GaN seeds , 2018 .

[2]  M. Islam,et al.  Ultrawide‐Bandgap Semiconductors: Research Opportunities and Challenges , 2017 .

[3]  H. Fujikura,et al.  Fabrication of large flat gallium nitride templates with extremely low dislocation densities in the 10 6 cm -2 range by novel two-side hydride vapor-phase epitaxial growth , 2017 .

[4]  Y. Tsusaka,et al.  Homoepitaxial Hydride Vapor Phase Epitaxy Growth on GaN Wafers Manufactured by the Na-Flux Method , 2017 .

[5]  D. Nakamura,et al.  Nanopipe formation as a result of boron impurity segregation in gallium nitride grown by halogen-free vapor phase epitaxy , 2016 .

[6]  U. Mishra,et al.  Comparing electrical performance of GaN trench-gate MOSFETs with a-plane and m-plane sidewall channels , 2016 .

[7]  A. Koukitu,et al.  Tri-halide vapor-phase epitaxy of GaN using GaCl3 on polar, semipolar, and nonpolar substrates , 2016 .

[8]  M. Boćkowski,et al.  Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds , 2016 .

[9]  T. Kimoto Bulk and epitaxial growth of silicon carbide , 2016 .

[10]  J. Sumakeris,et al.  Bulk Growth of Large Area SiC Crystals , 2016 .

[11]  Y. Mori,et al.  Fabrication of high-quality GaN substrates using the Na flux method , 2016 .

[12]  H. Matsumoto,et al.  High-quality, 2-inch-diameter m-plane GaN substrates grown by hydride vapor phase epitaxy on acidic ammonothermal seeds , 2016 .

[13]  T. Kimoto Material science and device physics in SiC technology for high-voltage power devices , 2015 .

[14]  J. Kortus,et al.  Investigation of GaN layers grown by high temperature vapor phase epitaxy , 2014 .

[15]  D. S. Kamber,et al.  High Quality, Low Cost Ammonothermal Bulk GaN Substrates , 2013 .

[16]  B. Jayant Baliga,et al.  Gallium nitride devices for power electronic applications , 2013 .

[17]  Tetsu Kachi,et al.  GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistor Fabricated with Novel Wet Etching , 2008 .

[18]  T. Kachi,et al.  A Vertical Insulated Gate AlGaN/GaN Heterojunction Field-Effect Transistor , 2007 .

[19]  O. Oda Compound Semiconductor Bulk Materials and Characterizations:Volume 2 , 2007 .

[20]  A. Trassoudaine,et al.  Growth of Gallium Nitride by Hydride Vapor Phase Epitaxy , 2006 .

[21]  M. Yoshimura,et al.  Homoepitaxial growth of GaN single crystals using gallium hydride , 2005 .

[22]  Tadashi Ito,et al.  Ultrahigh-quality silicon carbide single crystals , 2004, Nature.

[23]  M. Albrecht,et al.  Nitride Semiconductors: Handbook on Materials and Devices , 2003 .

[24]  T. Kachi,et al.  P-type doping of GaN by magnesium ion implantation , 2016 .

[25]  U. K. Mishra,et al.  CAVET on Bulk GaN Substrates Achieved With MBE-Regrown AlGaN/GaN Layers to Suppress Dispersion , 2012, IEEE Electron Device Letters.

[26]  H. Amano,et al.  Growth of single crystal GaN substrate using hydride vapor phase epitaxy , 1990 .