Ultra-broadband on-chip twisted light emitter for optical communications

On-chip twisted light emitters are essential components of orbital angular momentum (OAM) communication devices1, 2. These devices address the growing demand for high-capacity communication systems by providing an additional degree of freedom for wavelength/frequency division multiplexing (WDM/FDM). Although whispering-gallery-mode-enabled OAM emitters have been shown to possess some advantages3, 4, 5, such as compactness and phase accuracy, their inherent narrow bandwidths prevent them from being compatible with WDM/FDM techniques. Here, we demonstrate an ultra-broadband multiplexed OAM emitter that utilizes a novel joint path-resonance phase control concept. The emitter has a micron-sized radius and nanometer-sized features. Coaxial OAM beams are emitted across the entire telecommunication band from 1,450 to 1,650 nm. We applied the emitter to an OAM communication with a data rate of 1.2 Tbit/s assisted by 30-channel optical frequency combs (OFCs). The emitter provides a new solution to further increase capacity in the OFC communication scenario.

[1]  G. Vallone,et al.  Free-space quantum key distribution by rotation-invariant twisted photons. , 2014, Physical review letters.

[2]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[3]  J. M. Fedeli,et al.  Silicon photonics for next generation FDM/FDMA PON , 2012, IEEE/OSA Journal of Optical Communications and Networking.

[4]  A. Nicolas,et al.  A quantum memory for orbital angular momentum photonic qubits , 2013, Nature Photonics.

[5]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[6]  D. Grier A revolution in optical manipulation , 2003, Nature.

[7]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[8]  J. Shamir,et al.  Singular beam microscopy. , 2008, Applied optics.

[9]  Min Gu,et al.  On-chip noninterference angular momentum multiplexing of broadband light , 2016, Science.

[10]  Jeremy L O'Brien,et al.  Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters , 2014, Nature Communications.

[11]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[12]  L. Torner,et al.  Twisted Photons: Applications of Light with Orbital Angular Momentum , 2011 .

[13]  Siyuan Yu,et al.  Integrated Compact Optical Vortex Beam Emitters , 2012, Science.

[14]  B. Shen,et al.  An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint , 2015, Nature Photonics.

[15]  Nicolas K Fontaine,et al.  Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. , 2014, Optics express.

[16]  Francesca Parmigiani,et al.  26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing , 2011 .

[17]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[18]  Natalia M. Litchinitser,et al.  Orbital angular momentum microlaser , 2016, Science.

[19]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[20]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[21]  M. Padgett,et al.  Orbital Angular Momentum , 2015, Mathematical Optics.

[22]  Lute Maleki,et al.  Whispering gallery resonators for studying orbital angular momentum of a photon. , 2005, Physical review letters.

[23]  M. Lauermann,et al.  Coherent terabit communications with microresonator Kerr frequency combs , 2013, Nature Photonics.

[24]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[25]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[26]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[27]  Nicolas K Fontaine,et al.  Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. , 2012, Optics express.

[28]  Harald Giessen,et al.  Two-photon direct laser writing of ultracompact multi-lens objectives , 2016, Nature Photonics.

[29]  Yanne K Chembo,et al.  Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. , 2010, Physical review letters.

[30]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[31]  Jie Sun,et al.  Integrated continuously tunable optical orbital angular momentum generator , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[32]  M. Padgett,et al.  The Orbital Angular Momentum of Light: An Introduction , 2011 .

[33]  Pedro Chamorro-Posada,et al.  Quantum multiplexing with the orbital angular momentum of light , 2008, 0901.4740.

[34]  Wei Wang,et al.  Optical vortex metrology for nanometric speckle displacement measurement. , 2006, Optics express.