A dendrite method for cluster analysis

A method for identifying clusters of points in a multidimensional Euclidean space is described and its application to taxonomy considered. It reconciles, in a sense, two different approaches to the investigation of the spatial relationships between the points, viz., the agglomerative and the divisive methods. A graph, the shortest dendrite of Florek etal. (1951a), is constructed on a nearest neighbour basis and then divided into clusters by applying the criterion of minimum within cluster sum of squares. This procedure ensures an effective reduction of the number of possible splits. The method may be applied to a dichotomous division, but is perfectly suitable also for a global division into any number of clusters. An informal indicator of the "best number" of clusters is suggested. It is a"variance ratio criterion" giving some insight into the structure of the points. The method is illustrated by three examples, one of which is original. The results obtained by the dendrite method are compared with those...