Simple viscous flows: From boundary layers to the renormalization group

The seemingly simple problem of determining the drag on a body moving through a very viscous fluid has, for over 150 years, been a source of theoretical confusion, mathematical paradoxes, and experimental artifacts, primarily arising from the complex boundary layer structure of the flow near the body and at infinity. We review the extensive experimental and theoretical literature on this problem, with special emphasis on the logical relationship between different approaches. The survey begins with the developments of matched asymptotic expansions, and concludes with a discussion of perturbative renormalization group techniques, adapted from quantum field theory to differential equations. The renormalization group calculations lead to a new prediction for the drag coefficient, one which can both reproduce and surpass the results of matched asymptotics.

[1]  R. Feynman A relativistic cut-off for classical electrodynamics , 1948 .

[2]  Nigel Goldenfeld,et al.  Selection, stability and renormalization , 1994 .

[3]  H. Faxén,et al.  Einwirkung der Gefässwände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit , 1921 .

[4]  R. G. Casten,et al.  Basic Concepts Underlying Singular Perturbation Techniques , 1972 .

[5]  T. J. Hanratty,et al.  Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500 , 1969, Journal of Fluid Mechanics.

[6]  L. Mclerran,et al.  Properties of the quantum fluid at RHIC , 2006 .

[7]  L. Skinner GENERALIZED EXPANSIONS FOR SLOW FLOW PAST A CYLINDER , 1975 .

[8]  E. Lindgren The Motion of a Sphere in an Incompressible Viscous Fluid at Reynolds Numbers Considerably Less Than One , 1999 .

[9]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[10]  Journal of Rational Mechanics and Analysis , 1952, Nature.

[11]  A. Amerio,et al.  Physikalische Zeitschrift , 1900 .

[12]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[13]  Determination of the Drag on a Cylinder at Low Reynolds Numbers , 1953 .

[14]  J. Thomson,et al.  Philosophical Magazine , 1945, Nature.

[15]  S. Tomotika,et al.  THE STEADY FLOW OF VISCOUS FLUID PAST A SPHERE AND CIRCULAR CYLINDER AT SMALL REYNOLDS NUMBERS , 1950 .

[16]  T. Deguchi,et al.  International Journal of Modern Physics B, ❢c World Scientific Publishing Company , 2001 .

[17]  R. Whitmore,et al.  Experimental determination of the wall effect for spheres falling axially in cylindrical vessels , 1961 .

[18]  T. W. Hoffman,et al.  Numerical solution of the Navier‐Stokes equation for flow past spheres: Part I. Viscous flow around spheres with and without radial mass efflux , 1967 .

[19]  Horace Lamb F.R.S. XV. On the uniform motion of a sphere through a viscous fluid , 1911 .

[20]  H. R. Pruppacher,et al.  A Numerical Study of the Drag on a Sphere at Low and Intermediate Reynolds Numbers , 1970 .

[21]  Oono,et al.  Renormalization-group theory for the modified porous-medium equation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[22]  M. Shimshoni,et al.  The Steady Flow of a Viscous Fluid past a Circular Cylinder BY . SCR Dennis ( university of Sheffield ) and , 1964 .

[23]  I. Imai A new method of solving Oseen’s equations and its application to the flow past an inclined elliptic cylinder , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[25]  Antti Kupiainen,et al.  Renormalization Group and Asymptotics of Solutions of Nonlinear Parabolic Equations , 1993, chao-dyn/9306008.

[26]  H. Pruppacher,et al.  An Experimental Determination of the Drag on a Sphere at Low Reynolds Numbers , 1968 .

[27]  S. Rosenblat,et al.  Perturbation Method in Fluid Mechanics , 1976 .

[28]  A. Thom,et al.  The flow past circular cylinders at low speeds , 1933 .

[29]  C. M. White The drag of cylinders in fluids at slow speeds , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  P. P. Brown,et al.  Sphere Drag and Settling Velocity Revisited , 2003 .

[31]  D. Tritton,et al.  Physical Fluid Dynamics , 1977 .

[32]  J. H. E. Cohn,et al.  SOME INTEGRAL INEQUALITIES, II , 1972 .

[33]  P. Lugol Annalen der Physik , 1906 .

[34]  ScienceDirect Physica. B, Condensed matter , 1988 .

[35]  G Gabrielse,et al.  New determination of the fine structure constant from the electron value and QED. , 2006, Physical review letters.

[36]  Arrow,et al.  The Physics of Fluids , 1958, Nature.

[37]  H. Liebster Über den Widerstand von Kugeln , 1927 .

[38]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[39]  R. Sec. XXXVIII. On the flow of viscous liquids, especially in two dimensions , 1893 .

[40]  D. R. Breach,et al.  On the flow past a sphere at low Reynolds number , 1969, Journal of Fluid Mechanics.

[41]  H. D. Arnold LXXIV. Limitations imposed by slip and inertia terms upon Stoke's law for the motion of spheres through liquids , 1911 .

[42]  M. Ziane On a certain renormalization group method , 2000 .

[43]  S. Dennis,et al.  Calculation of the steady flow past a sphere at low and moderate Reynolds numbers , 1971, Journal of Fluid Mechanics.

[44]  Leonard Bairstow,et al.  The Resistance of a Cylinder Moving in a Viscous Fluid , 1923 .

[45]  Kenneth G. Wilson,et al.  Renormalization Group and Strong Interactions , 1971 .

[46]  Renormalization group theory and variational calculations for propagating fronts. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  J. Schwinger Quantum Electrodynamics. I. A Covariant Formulation , 1948 .

[48]  Andrzej Galat,et al.  Technical note , 2008, Comput. Biol. Chem..

[49]  J. Oppenheimer,et al.  On Infinite Field Reactions in Quantum Field Theory , 1948 .

[50]  J. Pearson,et al.  Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder , 1957, Journal of Fluid Mechanics.

[51]  Chen,et al.  Numerical renormalization-group calculations for similarity solutions and traveling waves. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  Oono,et al.  Renormalization group theory for global asymptotic analysis. , 1994, Physical review letters.

[53]  Urs Achim Wiedemann,et al.  Dissipative hydrodynamics and heavy-ion collisions , 2006 .

[54]  Oono,et al.  Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  D. Tritton Experiments on the flow past a circular cylinder at low Reynolds numbers , 1959, Journal of Fluid Mechanics.

[56]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[57]  M. V. Dyke Extension of Goldstein's series for the Oseen drag of a sphere , 1970, Journal of Fluid Mechanics.

[58]  T. Kunihiro A geometrical formulation of the renormalization group method for global analysis II: Partial differential equations , 1995, patt-sol/9508001.

[59]  Zeitschrift für Mathematik und Physik , 1891 .

[60]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[61]  Roger Temam,et al.  Renormalization group method applied to the primitive equations , 2005 .

[62]  Renormalization group approach to causal bulk viscous cosmological models , 2001, gr-qc/0108074.

[63]  Saul Kaplun,et al.  The role of coordinate systems in boundary-layer theory , 1954 .

[64]  James Copland,et al.  PROCEEDINGS OF THE ROYAL SOCIETY. , 2022 .

[65]  S. Goldstein,et al.  The Steady Flow of Viscous Fluid Past a Fixed Spherical Obstacle at Small Reynolds Numbers , 1929 .

[66]  Andreas Petermann,et al.  Normalization of constants in the quanta theory , 1952 .

[67]  H. S. A. M. B.Sc. XXXI. The motion of a sphere in a viscous fluid , 1900 .

[68]  S. Mahulikar,et al.  Physica Scripta , 2004 .

[69]  S. Goldstein,et al.  Modern developments in fluid dynamics : an account of theory and experiment relating to boundary layers, turbulent motion and wakes , 1939, The Journal of the Royal Aeronautical Society.

[70]  S. L. Woodruff A uniformly-valid asymptotic solution to a matrix system of ordinary differential equations and a proof of its validity , 1995 .

[71]  L. Rezzolla,et al.  Classical and Quantum Gravity , 1996 .

[72]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[73]  S. Cheng,et al.  Numerical Solution of a Uniform Flow over a Sphere at Intermediate Reynolds Numbers , 1969 .

[74]  日本物理学会,et al.  Progress in Theoretical Physics , 1946, Nature.

[75]  Mohammed Ziane,et al.  Renormalization Group Method. Applications to Partial Differential Equations , 2001 .

[76]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[77]  K. Wilson The renormalization group and critical phenomena , 1983 .

[78]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[79]  Accurate measurements of sphere drag at low Reynolds numbers , 1965 .

[80]  American Journal of Mathematics , 1886, Nature.

[81]  Stone Superfluid dynamics of the fractional quantum Hall state. , 1990, Physical review. B, Condensed matter.

[82]  R. Underwood Calculation of incompressible flow past a circular cylinder at moderate Reynolds numbers , 1969, Journal of Fluid Mechanics.

[83]  D. Shanks Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .

[84]  Physical Review , 1965, Nature.

[85]  H. R. Pruppacher,et al.  Some relations between drag and flow pattern of viscous flow past a sphere and a cylinder at low and intermediate Reynolds numbers , 1970, Journal of Fluid Mechanics.

[86]  B. J. Mason,et al.  The behaviour of freely falling cylinders and cones in a viscous fluid , 1965, Journal of Fluid Mechanics.

[87]  K. Beard,et al.  A Determination of the Terminal Velocity and Drag of Small Water Drops by Means of a Wind Tunnel. , 1969 .

[88]  E. Buckingham On Physically Similar Systems; Illustrations of the Use of Dimensional Equations , 1914 .

[89]  Liu,et al.  Anomalous dimensions and the renormalization group in a nonlinear diffusion process. , 1990, Physical review letters.

[90]  Stochastic Navier–Stokes equation and renormalization group theory , 2002 .

[91]  R. E. Casten,et al.  Nuclear Physics , 1935, Nature.

[92]  Journal of Chemical Physics , 1932, Nature.

[93]  R. Temam,et al.  Free Gravity Waves and Balanced Dynamics , 2002 .

[94]  D. N. De G. Allen,et al.  RELAXATION METHODS APPLIED TO DETERMINE THE MOTION, IN TWO DIMENSIONS, OF A VISCOUS FLUID PAST A FIXED CYLINDER , 1955 .

[95]  Mitutosi Kawaguti,et al.  Numerical Study of a Viscous Fluid Flow past a Circular Cylinder , 1966 .

[96]  October I Physical Review Letters , 2022 .

[97]  Renormalization of the long-wavelength solution of Einstein’s equation , 1999, gr-qc/9904053.

[98]  Renormalization and Asymptotics , 2000 .

[99]  Quantum Hall effect breakdown: analogies with fluid dynamics , 1998 .

[100]  Louis N. Howard,et al.  Fluid mechanics and singular perturbations : a collection of papers , 1967 .

[101]  V. G. Jenson Viscous flow round a sphere at low Reynolds numbers (<40) , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[102]  R. Grimshaw Journal of Fluid Mechanics , 1956, Nature.

[103]  M. Gell-Mann,et al.  QUANTUM ELECTRODYNAMICS AT SMALL DISTANCES , 1954 .

[104]  Quarterly Journal of Mechanics and Applied Mathematics , 1948, Nature.

[105]  Hinch Perturbation Methods , 1991 .