Silencing BMI1 eliminates tumor formation of pediatric glioma CD133+ cells not by affecting known targets but by down-regulating a novel set of core genes

[1]  S. Hansen,et al.  Clinical value of CD133 and nestin in patients with glioma: a population-based study. , 2014, International journal of clinical and experimental pathology.

[2]  L. Yao,et al.  BMI1 reprogrammes histone acetylation and enhances c-fos pathway via directly binding to Zmym3 in malignant myeloid progression , 2014, Journal of cellular and molecular medicine.

[3]  M. Remke,et al.  Polycomb group gene BMI1 controls invasion of medulloblastoma cells and inhibits BMP-regulated cell adhesion , 2014, Acta neuropathologica communications.

[4]  Y. Tu,et al.  Combined aberrant expression of Bmi1 and EZH2 is predictive of poor prognosis in glioma patients , 2013, Journal of the Neurological Sciences.

[5]  Y. Xiong,et al.  A Bmi1-miRNAs Cross-Talk Modulates Chemotherapy Response to 5-Fluorouracil in Breast Cancer Cells , 2013, PloS one.

[6]  C. Lau,et al.  Intravenous injection of oncolytic picornavirus SVV-001 prolongs animal survival in a panel of primary tumor-based orthotopic xenograft mouse models of pediatric glioma. , 2013, Neuro-oncology.

[7]  M. Serresi,et al.  In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. , 2013, Cancer cell.

[8]  Jiri Zavadil,et al.  DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs , 2012, Proceedings of the National Academy of Sciences.

[9]  M. Saleem,et al.  CANCER STEM CELLS Concise Review: Role of BMI1, a Stem Cell Factor, in Cancer Recurrence and Chemoresistance: Preclinical and Clinical Evidences , 2012 .

[10]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[11]  X. Wang,et al.  Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells , 2012, Oncogene.

[12]  T. Davis,et al.  BMI1 as a novel target for drug discovery in cancer , 2011, Journal of cellular biochemistry.

[13]  R. Wolff,et al.  Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer. , 2011, Mutation research.

[14]  Susan M. Chang,et al.  Pediatric brain tumors: Current treatment strategies and future therapeutic approaches , 2009, Neurotherapeutics.

[15]  P. Dirks,et al.  Brain tumor stem cells: The cancer stem cell hypothesis writ large , 2010, Molecular oncology.

[16]  M. Korc Driver mutations , 2010, Cancer biology & therapy.

[17]  J. Rich,et al.  Potential therapeutic implications of cancer stem cells in glioblastoma. , 2010, Biochemical pharmacology.

[18]  Yan Li,et al.  Identification of glia maturation factor beta as an independent prognostic predictor for serous ovarian cancer. , 2010, European journal of cancer.

[19]  Richard G Grundy,et al.  Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  P. Rao,et al.  A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. , 2010, Neuro-oncology.

[21]  Libing Song,et al.  Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-kappaB Pathway. , 2010, The American journal of pathology.

[22]  C. Kramm,et al.  Intensive chemotherapy improves survival in pediatric high‐grade glioma after gross total resection: results of the HIT‐GBM‐C protocol , 2010, Cancer.

[23]  J. Poyet,et al.  Targeting AAC-11 in cancer therapy , 2010, Expert opinion on therapeutic targets.

[24]  Guido Nikkhah,et al.  NOTCH Pathway Blockade Depletes CD133‐Positive Glioblastoma Cells and Inhibits Growth of Tumor Neurospheres and Xenografts , 2009, Stem cells.

[25]  Wenlin Huang,et al.  The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. , 2009, The Journal of clinical investigation.

[26]  Deric M. Park,et al.  Biology of glioma cancer stem cells , 2009, Molecules and cells.

[27]  G. Bernier,et al.  BMI1 Sustains Human Glioblastoma Multiforme Stem Cell Renewal , 2009, The Journal of Neuroscience.

[28]  I. Radovanovic,et al.  Limits of CD133 as a marker of glioma self‐renewing cells , 2009, International journal of cancer.

[29]  F. Zhou,et al.  Expression of Bmi-1 is a prognostic marker in bladder cancer , 2009, BMC Cancer.

[30]  Tao Song,et al.  Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients , 2008, Journal of experimental & clinical cancer research : CR.

[31]  M. Dowsett,et al.  ERBB2 influences the subcellular localization of the estrogen receptor in tamoxifen-resistant MCF-7 cells leading to the activation of AKT and RPS6KA2. , 2008, Endocrine-related cancer.

[32]  D. Ellison,et al.  Bmi1 is required for Hedgehog pathway-driven medulloblastoma expansion. , 2008, Neoplasia.

[33]  S. Bidlingmaier,et al.  The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells , 2008, Journal of Molecular Medicine.

[34]  K. Wong,et al.  Direct Orthotopic Transplantation of Fresh Surgical Specimen Preserves CD133+ Tumor Cells in Clinically Relevant Mouse Models of Medulloblastoma and Glioma , 2008, Stem cells.

[35]  Henry Adams,et al.  REST maintains self-renewal and pluripotency of embryonic stem cells , 2008, Nature.

[36]  G. Sommer,et al.  Reference , 2008 .

[37]  P. Lichter,et al.  Stem Cell Marker CD133 Affects Clinical Outcome in Glioma Patients , 2008, Clinical Cancer Research.

[38]  Ke Pan,et al.  Increased polycomb-group oncogene Bmi-1 expression correlates with poor prognosis in hepatocellular carcinoma , 2008, Journal of Cancer Research and Clinical Oncology.

[39]  S. Albrecht,et al.  Gene Expression Profiling from Formalin-Fixed Paraffin-Embedded Tumors of Pediatric Glioblastoma , 2007, Clinical Cancer Research.

[40]  O. van Tellingen,et al.  Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. , 2007, Cancer cell.

[41]  Alexander Brawanski,et al.  CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. , 2007, Cancer research.

[42]  P. Liberski,et al.  Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[44]  Jun-Yuan Ji,et al.  Functional Identification of Api5 as a Suppressor of E2F-Dependent Apoptosis In Vivo , 2006, PLoS genetics.

[45]  R. Jalali,et al.  Leptomeninges as a site of relapse in locally controlled, diffuse pontine glioma with review of literature , 2006, Child's Nervous System.

[46]  C. Lau,et al.  Valproic Acid Prolongs Survival Time of Severe Combined Immunodeficient Mice Bearing Intracerebellar Orthotopic Medulloblastoma Xenografts , 2006, Clinical Cancer Research.

[47]  Yun-Fei Xia,et al.  Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. , 2006, Cancer research.

[48]  Angelo L. Vescovi,et al.  Brain tumour stem cells , 2006, Nature Reviews Cancer.

[49]  K. Asai,et al.  Glia maturation factor‐β is produced by thymoma and may promote intratumoral T‐cell differentiation , 2005, Histopathology.

[50]  S. Morrison,et al.  Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. , 2005, Genes & development.

[51]  G. Glinsky,et al.  Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. , 2005, The Journal of clinical investigation.

[52]  Michael Dean,et al.  Tumour stem cells and drug resistance , 2005, Nature Reviews Cancer.

[53]  D. Farkas,et al.  Isolation of cancer stem cells from adult glioblastoma multiforme , 2004, Oncogene.

[54]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[55]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[56]  M. Clarke,et al.  Self-renewal and solid tumor stem cells , 2004, Oncogene.

[57]  P. Dirks,et al.  Cancer stem cells in nervous system tumors , 2004, Oncogene.

[58]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[59]  M. Lohuizen,et al.  Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas , 2004, Nature.

[60]  C. Chow,et al.  Phenylbutyrate and Phenylacetate Induce Differentiation and Inhibit Proliferation of Human Medulloblastoma Cells , 2004, Clinical Cancer Research.

[61]  Sean J Morrison,et al.  Bmi1, stem cells, and senescence regulation. , 2004, The Journal of clinical investigation.

[62]  Michael F. Clarke,et al.  Applying the principles of stem-cell biology to cancer , 2003, Nature Reviews Cancer.

[63]  S. Morrison,et al.  Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation , 2003, Nature.

[64]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[65]  G. Sauvageau,et al.  Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells , 2003, Nature.

[66]  Irving L. Weissman,et al.  Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells , 2003, Nature.

[67]  S. Morrison,et al.  Prospective identification of tumorigenic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[69]  H. Sasaki,et al.  Expression of the antiapoptosis gene, AAC-11, as a prognosis marker in non-small cell lung cancer. , 2001, Lung cancer.

[70]  C. Meijer,et al.  Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. , 2001, Blood.

[71]  I. Weissman,et al.  Direct isolation of human central nervous system stem cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[72]  K Kornfeld,et al.  Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. , 1999, Genes & development.

[73]  A. Berns,et al.  Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. , 1999, Genes & development.

[74]  B. Ross,et al.  AAC-11, a novel cDNA that inhibits apoptosis after growth factor withdrawal. , 1997, Cancer research.

[75]  Y. Haupt,et al.  bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. , 1993, Oncogene.

[76]  W. Alexander,et al.  Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eμ-myc transgenic mice , 1991, Cell.

[77]  S. Shamim,et al.  Neurosurgery , 1985, Springer International Publishing.