Resting brain dynamics at different timescales capture distinct aspects of human behavior

[1]  Mert R. Sabuncu,et al.  Global signal regression strengthens association between resting-state functional connectivity and behavior , 2019, NeuroImage.

[2]  G. Deco,et al.  Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain , 2019, Science Advances.

[3]  Dimitri Van De Ville,et al.  Dynamic mode decomposition of resting-state and task fMRI , 2018, NeuroImage.

[4]  D. V. Essen,et al.  Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics , 2018, Neuron.

[5]  J. Marchini,et al.  Genome-wide association studies of brain imaging phenotypes in UK Biobank , 2018, Nature.

[6]  K. Davis,et al.  Multivariate machine learning distinguishes cross-network dynamic functional connectivity patterns in state and trait neuropathic pain , 2018, Pain.

[7]  Julian Lim,et al.  Dynamic functional connectivity markers of objective trait mindfulness , 2018, NeuroImage.

[8]  Vince D Calhoun,et al.  The Impact of Combinations of Alcohol, Nicotine, and Cannabis on Dynamic Brain Connectivity , 2018, Neuropsychopharmacology.

[9]  Hyunjin Park,et al.  Dynamic functional connectivity analysis reveals improved association between brain networks and eating behaviors compared to static analysis , 2018, Behavioural Brain Research.

[10]  Marina Vannucci,et al.  Temporal and spectral characteristics of dynamic functional connectivity between resting-state networks reveal information beyond static connectivity , 2018, PloS one.

[11]  Jessica R. Cohen The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity , 2017, NeuroImage.

[12]  Stephen M. Smith,et al.  Brain network dynamics are hierarchically organized in time , 2017, Proceedings of the National Academy of Sciences.

[13]  Dimitri Van De Ville,et al.  The dynamic functional connectome: State-of-the-art and perspectives , 2017, NeuroImage.

[14]  Vince D. Calhoun,et al.  Replicability of time-varying connectivity patterns in large resting state fMRI samples , 2017, NeuroImage.

[15]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[16]  B. T. Thomas Yeo,et al.  Interpreting temporal fluctuations in resting-state functional connectivity MRI , 2017, NeuroImage.

[17]  André Zugman,et al.  Commentary: Functional connectome fingerprint: identifying individuals using patterns of brain connectivity , 2017, Front. Hum. Neurosci..

[18]  Danielle S. Bassett,et al.  Multi-scale brain networks , 2016, NeuroImage.

[19]  Andrew T. Drysdale,et al.  Resting-state connectivity biomarkers define neurophysiological subtypes of depression , 2016, Nature Medicine.

[20]  Jessica R. Cohen,et al.  The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition , 2016, The Journal of Neuroscience.

[21]  Zachary C. Irving,et al.  Mind-wandering as spontaneous thought: a dynamic framework , 2016, Nature Reviews Neuroscience.

[22]  Mert R. Sabuncu,et al.  Morphometricity as a measure of the neuroanatomical signature of a trait , 2016, Proceedings of the National Academy of Sciences.

[23]  Tian Ge,et al.  Multidimensional heritability analysis of neuroanatomical shape , 2016, Nature Communications.

[24]  Juan Zhou,et al.  Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states , 2016, Proceedings of the National Academy of Sciences.

[25]  Kaustubh Supekar,et al.  Distinct Global Brain Dynamics and Spatiotemporal Organization of the Salience Network , 2016, PLoS biology.

[26]  Olaf Sporns,et al.  Comparative Connectomics , 2016, Trends in Cognitive Sciences.

[27]  Gustavo Deco,et al.  Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? , 2016, NeuroImage.

[28]  Thomas A. W. Bolton,et al.  Neuroimage: Clinical Prediction of Long-term Memory Scores in Mci Based on Resting-state Fmri a R T I C L E I N F O , 2022 .

[29]  Olaf Sporns,et al.  Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks , 2015, NeuroImage.

[30]  B T Thomas Yeo,et al.  The modular and integrative functional architecture of the human brain , 2015, Proceedings of the National Academy of Sciences.

[31]  M. Chun,et al.  Functional connectome fingerprinting: Identifying individuals based on patterns of brain connectivity , 2015, Nature Neuroscience.

[32]  Christopher L. Asplund,et al.  Functional Specialization and Flexibility in Human Association Cortex. , 2015, Cerebral cortex.

[33]  Thomas E. Nichols,et al.  A positive-negative mode of population covariation links brain connectivity, demographics and behavior , 2015, Nature Neuroscience.

[34]  Wei Gao,et al.  Task‐related modulation of functional connectivity variability and its behavioral correlations , 2015, Human brain mapping.

[35]  Sepideh Sadaghiani,et al.  Ongoing dynamics in large-scale functional connectivity predict perception , 2015, Proceedings of the National Academy of Sciences.

[36]  J. Morton,et al.  Tracking the Brain's Functional Coupling Dynamics over Development , 2015, The Journal of Neuroscience.

[37]  D. Lulé,et al.  To rise and to fall: functional connectivity in cognitively normal and cognitively impaired patients with Parkinson's disease , 2015, Neurobiology of Aging.

[38]  M. Raichle,et al.  Lag threads organize the brain’s intrinsic activity , 2015, Proceedings of the National Academy of Sciences.

[39]  M. Sigman,et al.  Signature of consciousness in the dynamics of resting-state brain activity , 2015, Proceedings of the National Academy of Sciences.

[40]  Dimitri Van De Ville,et al.  On spurious and real fluctuations of dynamic functional connectivity during rest , 2015, NeuroImage.

[41]  B. T. Thomas Yeo,et al.  Cerebral functional connectivity periodically (de)synchronizes with anatomical constraints , 2015, Brain Structure and Function.

[42]  Danielle S. Bassett,et al.  Brain Network Adaptability across Task States , 2014, PLoS Comput. Biol..

[43]  Steen Moeller,et al.  ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging , 2014, NeuroImage.

[44]  Leonardo L. Gollo,et al.  Time-resolved resting-state brain networks , 2014, Proceedings of the National Academy of Sciences.

[45]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[46]  Krzysztof J. Gorgolewski,et al.  Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI , 2014, Front. Hum. Neurosci..

[47]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[48]  David A. Leopold,et al.  Dynamic functional connectivity: Promise, issues, and interpretations , 2013, NeuroImage.

[49]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[50]  Abraham Z. Snyder,et al.  Function in the human connectome: Task-fMRI and individual differences in behavior , 2013, NeuroImage.

[51]  J. Mattingley,et al.  Dynamic cooperation and competition between brain systems during cognitive control , 2013, Trends in Cognitive Sciences.

[52]  Stephen M. Smith,et al.  Multimodal Surface Matching: Fast and Generalisable Cortical Registration Using Discrete Optimisation , 2013, IPMI.

[53]  A. Zalesky,et al.  Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection , 2012, Proceedings of the National Academy of Sciences.

[54]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[55]  Bryon A. Mueller,et al.  Altered resting state complexity in schizophrenia , 2012, NeuroImage.

[56]  Jared A. Nielsen,et al.  Functional connectivity magnetic resonance imaging classification of autism. , 2011, Brain : a journal of neurology.

[57]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[58]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[59]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[60]  Scott T. Grafton,et al.  Dynamic reconfiguration of human brain networks during learning , 2010, Proceedings of the National Academy of Sciences.

[61]  Daniel L. Schacter,et al.  Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition , 2010, NeuroImage.

[62]  John C Gore,et al.  Functional MRI and multivariate autoregressive models. , 2010, Magnetic resonance imaging.

[63]  R. Kahn,et al.  Efficiency of Functional Brain Networks and Intellectual Performance , 2009, The Journal of Neuroscience.

[64]  Jun Li,et al.  Brain spontaneous functional connectivity and intelligence , 2008, NeuroImage.

[65]  Krista E. DeLeeuw,et al.  A Comparison of Three Measures of Cognitive Load: Evidence for Separable Measures of Intrinsic, Extraneous, and Germane Load , 2008 .

[66]  M. Antony,et al.  Psychometric properties of the State-Trait Inventory for Cognitive and Somatic Anxiety (STICSA): comparison to the State-Trait Anxiety Inventory (STAI). , 2007, Psychological assessment.

[67]  Kuncheng Li,et al.  Altered functional connectivity in early Alzheimer's disease: A resting‐state fMRI study , 2007, Human brain mapping.

[68]  Scott T. Grafton,et al.  Wandering Minds: The Default Network and Stimulus-Independent Thought , 2007, Science.

[69]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[70]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[71]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[72]  Lester Melie-García,et al.  Estimating brain functional connectivity with sparse multivariate autoregression , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[73]  Margaret King,et al.  State of the art and perspectives , 2004, Machine Translation.

[74]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[76]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[77]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[78]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[79]  R. C. Macridis A review , 1963 .