Corrigendum: Gravitational waves from plunges into Gargantua (2018 Class. Quantum Grav. 35 104002)
暂无分享,去创建一个
[1] G. Compère,et al. Spin and quadrupole couplings for high spin equatorial intermediate mass-ratio coalescences , 2019, Classical and Quantum Gravity.
[2] S. Gralla,et al. Critical exponents of extremal Kerr perturbations , 2017, 1711.00855.
[3] T. Hertog,et al. Gravitational waves from plunges into Gargantua , 2017, 1712.07130.
[4] J. Gair,et al. Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals , 2017, 1703.09722.
[5] R. Oliveri,et al. Self-similar accretion in thin discs around near-extremal black holes , 2017, 1703.00022.
[6] Achilleas P. Porfyriadis,et al. Whirling orbits around twirling black holes from conformal symmetry , 2016, 1611.09834.
[7] A. Zimmerman,et al. Transient Instability of Rapidly Rotating Black Holes , 2016, 1608.04739.
[8] L. Burko,et al. Gravitational waves from a plunge into a nearly extremal Kerr black hole , 2016, 1608.02244.
[9] A. Strominger,et al. Near-horizon Kerr magnetosphere , 2016, 1602.01833.
[10] S. Hod. On the branching of the quasinormal resonances of near-extremal Kerr black holes , 2015, 1510.05604.
[11] M. Colleoni,et al. Self-force as a cosmic censor in the Kerr overspinning problem , 2015, 1508.04031.
[12] A. Strominger,et al. Fast plunges into Kerr black holes , 2015, 1504.07650.
[13] N. Warburton,et al. Particle on the innermost stable circular orbit of a rapidly spinning black hole , 2015, 1506.08496.
[14] J. Gair,et al. Research Update on Extreme-Mass-Ratio Inspirals , 2014, 1410.0958.
[15] G. B. Cook,et al. Gravitational perturbations of the Kerr geometry: High-accuracy study , 2014, 1410.7698.
[16] A. Strominger,et al. Gravity waves from extreme-mass-ratio plunges into Kerr black holes , 2014, 1403.2797.
[17] Gravity waves from the Kerr/CFT correspondence , 2014 .
[18] A. Zimmerman,et al. Quasinormal modes of nearly extremal Kerr spacetimes: Spectrum bifurcation and power-law ringdown , 2013, 1307.8086.
[19] D. Nichols,et al. Branching of quasinormal modes for nearly extremal Kerr black holes , 2012, 1212.3271.
[20] A. Nagar,et al. Critical phenomena at the threshold of immediate merger in binary black hole systems: the extreme mass ratio case , 2012, 1207.5167.
[21] G. Compère. The Kerr/CFT Correspondence and its Extensions , 2012, Living Reviews in Relativity.
[22] S. Aretakis. Decay of Axisymmetric Solutions of the Wave Equation on Extreme Kerr Backgrounds , 2011, 1110.2006.
[23] Irene Bredberg,et al. Cargese Lectures on the Kerr/CFT Correspondence , 2011, 1103.2355.
[24] A. Sa̧dowski,et al. Spinning up black holes with super-critical accretion flows , 2011, 1102.2456.
[25] E. Poisson,et al. The Motion of Point Particles in Curved Spacetime , 2003, Living reviews in relativity.
[26] B. Whiting,et al. Mass and motion in general relativity , 2011 .
[27] Semianalytical estimates of scattering thresholds and gravitational radiation in ultrarelativistic black hole encounters , 2010, 1003.0812.
[28] Wei Song,et al. Black hole superradiance from Kerr/CFT , 2009, 0907.3477.
[29] J. Silk,et al. Kerr black holes as particle accelerators to arbitrarily high energy. , 2009, Physical review letters.
[30] L. Barack. Gravitational self-force in extreme mass-ratio inspirals , 2009, 0908.1664.
[31] Frans Pretorius,et al. Cross section, final spin, and zoom-whirl behavior in high-energy black-hole collisions. , 2009, Physical review letters.
[32] H. Reall,et al. Kerr-CFT and gravitational perturbations , 2009, 0906.2380.
[33] G. Miniutti,et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495 , 2009, Nature.
[34] Wei Song,et al. Kerr/CFT Correspondence , 2008, 0809.4266.
[35] S. Hod. Slow relaxation of rapidly rotating black holes , 2008, 0811.3806.
[36] Marta Volonteri,et al. Cosmological Black Hole Spin Evolution by Mergers and Accretion , 2008, 0802.0025.
[37] J. Gair,et al. Astrophysics, detection and science applications of intermediate- and extreme mass-ratio inspirals , 2007 .
[38] F. Pretorius,et al. Black hole mergers and unstable circular orbits , 2007, gr-qc/0702084.
[39] L. Brenneman,et al. Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.
[40] S. Detweiler. Perspective on gravitational self-force analyses , 2005, gr-qc/0501004.
[41] The evolution of circular, non-equatorial orbits of Kerr black holes due to gravitational-wave emission , 1999, gr-qc/9910091.
[42] J. Bardeen,et al. Extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2 , 1999, hep-th/9905099.
[43] Leaver,et al. Spectral decomposition of the perturbation response of the Schwarzschild geometry. , 1986, Physical review. D, Particles and fields.
[44] Subrahmanyan Chandrasekhar,et al. The Mathematical Theory of Black Holes , 1983 .
[45] J. Lasota,et al. Spin-up of black holes by thick accretion disks , 1980 .
[46] P. Chrzanowski. Vector potential and metric perturbations of a rotating black hole , 1975 .
[47] T. Piran,et al. High efficiency of the Penrose mechanism for particle collisions , 1975 .
[48] W. Press,et al. Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation. , 1974 .
[49] K. Thorne. Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .
[50] Saul A. Teukolsky,et al. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .
[51] R. Wald. On perturbations of a Kerr black hole , 1973 .
[52] William H. Press,et al. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .