Background initialisation by spatio-temporal motion estimation

Estimating the initial background of a scene is a key prerequisite for several applications in video analytics. In this paper, we present a simple approach that takes into account spatio-temporal motion intensities while estimating the true background. We tested the algorithm on real video sequences from the Scene Background Initialization (SBI) benchmark dataset, and the results show that the algorithm is competitive compared to the state of the art.

[1]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[2]  Marc Van Droogenbroeck,et al.  LaBGen: A method based on motion detection for generating the background of a scene , 2017, Pattern Recognit. Lett..

[3]  Lucia Maddalena,et al.  The SOBS algorithm: What are the limits? , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[4]  David Suter,et al.  A Novel Robust Statistical Method for Background Initialization and Visual Surveillance , 2006, ACCV.

[5]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[6]  Massimo De Gregorio,et al.  Background Modeling by Weightless Neural Networks , 2015, ICIAP Workshops.

[7]  Fahd Bouzaraa,et al.  CNN-based initial background estimation , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[8]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[9]  Marc Van Droogenbroeck,et al.  LaBGen-P: A pixel-level stationary background generation method based on LaBGen , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[10]  Lucia Maddalena,et al.  Scene background initialization: A taxonomy , 2017, Pattern Recognit. Lett..

[11]  Luca Iocchi,et al.  Multi-modal Background Model Initialization , 2015, ICIAP Workshops.

[12]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[13]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[14]  Thierry Bouwmans,et al.  Traditional and recent approaches in background modeling for foreground detection: An overview , 2014, Comput. Sci. Rev..

[15]  Brian C. Lovell,et al.  A Low-Complexity Algorithm for Static Background Estimation from Cluttered Image Sequences in Surveillance Contexts , 2013, EURASIP J. Image Video Process..

[16]  Huiyu Zhou,et al.  Region-based Mixture of Gaussians modelling for foreground detection in dynamic scenes , 2015, Pattern Recognit..