Recycling of nitrogen and light noble gases in the Central American subduction zone: Constraints from 15N15N

[1]  J. Barnes,et al.  Subduction-Driven Volatile Recycling: A Global Mass Balance , 2020 .

[2]  B. Marty,et al.  Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen , 2020, Nature.

[3]  D. Teagle,et al.  A re-assessment of the nitrogen geochemical behavior in upper oceanic crust from Hole 504B: Implications for subduction budget in Central America , 2019, Earth and Planetary Science Letters.

[4]  B. Schoene,et al.  Plate tectonics and continental basaltic geochemistry throughout Earth history , 2018 .

[5]  Huanting Hu,et al.  Extreme enrichment in atmospheric 15N15N , 2017, Science Advances.

[6]  S. Kattenhorn,et al.  Incipient rifting accompanied by the release of subcontinental lithospheric mantle volatiles in the Magadi and Natron basin, East Africa , 2017 .

[7]  C. Ballentine,et al.  Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field , 2016 .

[8]  D. Teagle,et al.  The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles , 2016 .

[9]  E. Gazel,et al.  Sulfur and carbon geochemistry of the Santa Elena peridotites: Comparing oceanic and continental processes during peridotite alteration , 2016 .

[10]  Edward D. Young,et al.  A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases , 2016 .

[11]  Z. Sharp,et al.  Kinetic nitrogen isotope fractionation between air and dissolved N2 in water: Implications for hydrothermal systems , 2015 .

[12]  C. Rochelle,et al.  Determining noble gas partitioning within a CO2–H2O system at elevated temperatures and pressures , 2015 .

[13]  M. Soda,et al.  Corrigendum: Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects , 2015, Scientific Reports.

[14]  J. M. Moor,et al.  Temporal variations in fumarole gas chemistry at Poás volcano, Costa Rica , 2015 .

[15]  T. Fischer,et al.  Sulphur geodynamic cycle , 2015, Scientific Reports.

[16]  D. Sverjensky,et al.  Nitrogen speciation in upper mantle fluids and the origin of Earth's nitrogen-rich atmosphere , 2014 .

[17]  M. J. Carr,et al.  Volcanism and Geochemistry in Central America: Progress and Problems , 2013 .

[18]  Katherine A. Kelley,et al.  Why do mafic arc magmas contain ∼4wt% water on average? , 2013 .

[19]  S. Mukhopadhyay Early differentiation and volatile accretion recorded in deep-mantle neon and xenon , 2012, Nature.

[20]  K. Kobayashi,et al.  Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites , 2011 .

[21]  Y. Taran,et al.  Geochemistry of volcanic and hydrothermal gases of Mutnovsky volcano, Kamchatka: evidence for mantle, slab and atmosphere contributions to fluids of a typical arc volcano , 2011 .

[22]  D. Hilton,et al.  Monitoring of temporal and spatial variations in fumarole helium and carbon dioxide characteristics at Poás and Turrialba volcanoes, Costa Rica (2001-2009) , 2010 .

[23]  Y. Taran Geochemistry of volcanic and hydrothermal fluids and volatile budget of the Kamchatka–Kuril subduction zone , 2009 .

[24]  David W. Szymanski,et al.  Galapagos‐OIB signature in southern Central America: Mantle refertilization by arc–hot spot interaction , 2009 .

[25]  M. Moreira,et al.  He, Ne and Ar systematics in single vesicles: Mantle isotopic ratios and origin of the air component in basaltic glasses , 2008 .

[26]  W. Strauch,et al.  Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua , 2008, Nature.

[27]  D. Hilton,et al.  The He–CO2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: New constraints on volatile mass balance of the Central American Volcanic Arc , 2007 .

[28]  D. Hilton,et al.  Tracing Nitrogen in Volcanic and Geothermal Volatiles from the Nicaraguan Volcanic Front , 2006 .

[29]  J. Severinghaus,et al.  A redetermination of the isotopic abundances of atmospheric Ar , 2006 .

[30]  G. Holland,et al.  Seawater subduction controls the heavy noble gas composition of the mantle , 2006, Nature.

[31]  Long Li,et al.  Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity , 2005 .

[32]  D. Hilton,et al.  Nitrogen isotopes of the mantle: Insights from mineral separates , 2005 .

[33]  R. Fergason,et al.  Thermal structure of the Costa Rica – Nicaragua subduction zone , 2005 .

[34]  N. Varley,et al.  Nitrogen isotopes in thermal fluids of a forearc region (Jalisco Block, Mexico): Evidence for heavy nitrogen from continental crust , 2004 .

[35]  D. Hilton,et al.  Nitrogen systematics and gas fluxes of subduction zones: Insights from Costa Rica arc volatiles , 2004 .

[36]  B. Marty,et al.  Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity , 2003 .

[37]  P. Cartigny,et al.  Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe) , 2003 .

[38]  B. Marty,et al.  The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present , 2003 .

[39]  R. Poreda,et al.  Sources of nitrogen and methane in Central American geothermal settings: Noble gas and 129I evidence for crustal and magmatic volatile components , 2003 .

[40]  D. Hilton,et al.  Subduction and Recycling of Nitrogen Along the Central American Margin , 2002, Science.

[41]  J. Moyen,et al.  Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth , 2002 .

[42]  C. Findlay,et al.  Subduction erosion along the Middle America convergent margin , 2000, Nature.

[43]  M. J. Carr,et al.  Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input , 2000 .

[44]  B. Marty,et al.  Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition , 1999 .

[45]  M. Moreira,et al.  Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle , 1998, Science.

[46]  B. Marty,et al.  NITROGEN AND ARGON ISOTOPES IN OCEANIC BASALTS , 1997 .

[47]  W. Giggenbach Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin , 1992 .

[48]  M. Fogel,et al.  Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: Implications for metamorphic devolatilization history , 1992 .

[49]  F. Pineau,et al.  The volatiles record of a “popping” rock from the Mid-Atlantic Ridge at 14°N: chemical and isotopic composition of gas trapped in the vesicles , 1991 .

[50]  J. H. Reynolds,et al.  Noble gases from Honduras geothermal sites , 1991 .

[51]  T. Staudacher,et al.  Recycling of oceanic crust and sediments: the noble gas subduction barrier , 1988 .

[52]  E. Cottrell,et al.  Warm and oxidizing slabs limit ingassing efficiency of nitrogen to the mantle , 2021 .

[53]  T. Fischer,et al.  The Analysis and Interpretation of Noble Gases in Modern Hydrothermal Systems , 2013 .

[54]  P. Burnard The Noble Gases as Geochemical Tracers , 2013 .

[55]  T. Fischer Subduction and Recycling of Nitrogen Along the , 2006 .

[56]  O. Vaselli,et al.  Fumarole migration and fluid geochemistry at Poás Volcano (Costa Rica) from 1998 to 2001 , 2003, Geological Society, London, Special Publications.

[57]  B. Marty,et al.  Tracing Fluid Origin, Transport and Interaction in the Crust , 2002 .

[58]  B. Marty,et al.  Noble gases and volatile recycling at subduction zones , 2002 .

[59]  T. Fischer,et al.  Volcanic flux of nitrogen from the Earth , 2001 .