Filtering-Based Multistage Recursive Identification Algorithm for an Input Nonlinear Output-Error Autoregressive System by Using the Key Term Separation Technique

This paper derives a data filtering-based two-stage stochastic gradient algorithm and a data filtering-based multistage recursive least-squares algorithm for input nonlinear output-error autoregressive systems (i.e., Hammerstein systems). The output of the system is expressed as a linear combination of all system parameters based on the key term separation technique. The basic idea of the proposed algorithm is to filter the input–output data and to separate the parameter vector into several vectors and to interactively identify each parameter vector. The data filtering-based two-stage stochastic gradient algorithm has higher convergence rate than the stochastic gradient algorithm. Compared with the recursive generalized least-squares algorithm, the dimensions of the involved covariance matrices in the data filtering-based multistage recursive least-squares algorithm become small, and thus the data filtering-based multistage recursive least-squares algorithm has a higher computational efficiency. The numerical simulation results indicate that the proposed algorithms are effective.

[1]  Aydogan Savran,et al.  Discrete state space modeling and control of nonlinear unknown systems. , 2013, ISA transactions.

[2]  Rik Pintelon,et al.  Identification of a Wiener–Hammerstein system using the polynomial nonlinear state space approach , 2009 .

[3]  Feng Ding,et al.  Recursive Parameter Estimation Algorithms and Convergence for a Class of Nonlinear Systems with Colored Noise , 2016, Circuits Syst. Signal Process..

[4]  Jiandong Wang,et al.  Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model , 2014, Nonlinear Dynamics.

[5]  Torsten Söderström,et al.  Accuracy analysis of time domain maximum likelihood method and sample maximum likelihood method for errors-in-variables and output error identification , 2010, Autom..

[6]  Dongqing Wang,et al.  Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models , 2016, Appl. Math. Lett..

[7]  J. Schoukens,et al.  Blind Maximum Likelihood Identification of Hammerstein Systems , 2008 .

[8]  Yan Ji,et al.  Unified Synchronization Criteria for Hybrid Switching-Impulsive Dynamical Networks , 2015, Circuits Syst. Signal Process..

[9]  Wei Zhang,et al.  Improved least squares identification algorithm for multivariable Hammerstein systems , 2015, J. Frankl. Inst..

[10]  Ximei Liu,et al.  New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems , 2014, Nonlinear Dynamics.

[11]  Er-Wei Bai,et al.  A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[12]  D. Wang Brief paper: Lleast squares-based recursive and iterative estimation for output error moving average systems using data filtering , 2011 .

[13]  Brett Ninness,et al.  Robust maximum-likelihood estimation of multivariable dynamic systems , 2005, Autom..

[14]  Jing Lu,et al.  Least squares based iterative identification for a class of multirate systems , 2010, Autom..

[15]  Hadiseh Karimi,et al.  A maximum-likelihood method for estimating parameters, stochastic disturbance intensities and measurement noise variances in nonlinear dynamic models with process disturbances , 2014, Comput. Chem. Eng..

[16]  Feng Ding,et al.  Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition , 2016, Circuits Syst. Signal Process..

[17]  M. Eslami,et al.  Solutions of Nonlinear Chemistry Problems by Homotopy Analysis , 2014 .

[18]  E. Bai An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998 .

[19]  Feng Ding,et al.  Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle , 2014, Appl. Math. Comput..

[20]  Junhong Li,et al.  Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration , 2013, Appl. Math. Lett..

[21]  Feng Ding,et al.  Decomposition Based Newton Iterative Identification Method for a Hammerstein Nonlinear FIR System with ARMA Noise , 2014, Circuits Syst. Signal Process..

[22]  Jie Ding,et al.  Auxiliary model based parameter estimation for dual-rate output error systems with colored noise ☆ , 2013 .

[23]  Zhanqiang Liu,et al.  Signal frequency and parameter estimation for power systems using the hierarchical identification principle , 2010, Math. Comput. Model..

[24]  Hui Zhang,et al.  Robust ℋ︁∞ PID control for multivariable networked control systems with disturbance/noise attenuation , 2012 .

[25]  Biao Huang,et al.  Parameter estimation in batch process using EM algorithm with particle filter , 2013, Comput. Chem. Eng..

[26]  F. Ding,et al.  Convergence of the recursive identification algorithms for multivariate pseudo‐linear regressive systems , 2016 .

[27]  Sirish L. Shah,et al.  Recursive constrained state estimation using modified extended Kalman filter , 2014, Comput. Chem. Eng..

[28]  Feng Ding,et al.  Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering , 2016 .

[29]  Jie Ding,et al.  Modified Subspace Identification for Periodically Non-uniformly Sampled Systems by Using the Lifting Technique , 2013, Circuits, Systems, and Signal Processing.

[30]  Simon X. Yang,et al.  Observer-Based Adaptive Neural Network Trajectory Tracking Control for Remotely Operated Vehicle , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[31]  Feng Ding,et al.  Iterative estimation for a non-linear IIR filter with moving average noise by means of the data filtering technique , 2017, IMA J. Math. Control. Inf..

[32]  Tao Tang,et al.  Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique , 2014 .

[33]  Jiandong Wang,et al.  Detection of asymmetric control valve stiction from oscillatory data using an extended Hammerstein system identification method , 2014 .

[34]  Mahmood Karimi,et al.  Estimating multivariate ARCH parameters by two-stage least-squares method , 2009, Signal Process..

[35]  J. Voros Modeling and parameter identification of systems with multisegment piecewise-linear characteristics , 2002 .

[36]  Vojislav Z. Filipovic,et al.  Consistency of the robust recursive Hammerstein model identification algorithm , 2015, J. Frankl. Inst..

[37]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[38]  Feng Ding,et al.  Hierarchical Least Squares Identification for Hammerstein Nonlinear Controlled Autoregressive Systems , 2015, Circuits Syst. Signal Process..

[39]  Feng Ding,et al.  An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering , 2016, J. Frankl. Inst..

[40]  Huazhen Fang,et al.  Kalman filter-based identification for systems with randomly missing measurements in a network environment , 2010, Int. J. Control.

[41]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[42]  Feng Ding,et al.  Parameter estimation algorithms for multivariable Hammerstein CARMA systems , 2016, Inf. Sci..

[43]  Baolin Liu,et al.  Recursive Extended Least Squares Parameter Estimation for Wiener Nonlinear Systems with Moving Average Noises , 2013, Circuits, Systems, and Signal Processing.

[44]  Hooshang Jazayeri-Rad,et al.  Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor , 2011, Comput. Chem. Eng..

[45]  Feng Ding,et al.  The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique , 2016, Signal Process..

[46]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[47]  Xiang Cao,et al.  Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[48]  Wenge Zhang,et al.  Decomposition based least squares iterative estimation algorithm for output error moving average systems , 2014 .

[49]  Jozef Vörös,et al.  Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones , 2003, IEEE Trans. Autom. Control..