Genome organisation and chromatin structure in Escherichia coli.

[1]  W. Chen,et al.  Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli. , 2007, Electrophoresis.

[2]  T. Speed,et al.  Biological Sequence Analysis , 1998 .

[3]  C. Wyman,et al.  H-NS mediated compaction of DNA visualised by atomic force microscopy. , 2000, Nucleic acids research.

[4]  Akira Ishihama,et al.  Two types of localization of the DNA‐binding proteins within the Escherichia coli nucleoid , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[5]  S Brunak,et al.  A DNA structural atlas for Escherichia coli. , 2000, Journal of molecular biology.

[6]  C. Higgins,et al.  Oligomerization of the chromatin‐structuring protein H‐NS , 2000, Molecular microbiology.

[7]  G. Stormo,et al.  ANN-Spec: a method for discovering transcription factor binding sites with improved specificity. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[8]  S. Bachellier,et al.  Short palindromic repetitive DNA elements in enterobacteria: a survey. , 1999, Research in microbiology.

[9]  D. Ussery,et al.  Three views of microbial genomes. , 1999, Research in microbiology.

[10]  A. Dri,et al.  Role of Escherichia coli RpoS, LexA and H-NS global regulators in metabolism and survival under aerobic, phosphate-starvation conditions. , 1999, Microbiology.

[11]  J. Rohde,et al.  The Yersinia enterocolitica pYV Virulence Plasmid Contains Multiple Intrinsic DNA Bends Which Melt at 37°C , 1999, Journal of bacteriology.

[12]  R. Hengge-aronis,et al.  Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. , 1999, Current opinion in microbiology.

[13]  C. Dorman,et al.  Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. , 1999, Trends in microbiology.

[14]  Akira Ishihama,et al.  Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival , 1999, Genes to cells : devoted to molecular & cellular mechanisms.

[15]  D. Ussery,et al.  Environmental influences on DNA curvature. , 1999, Journal of biomolecular structure & dynamics.

[16]  A. Travers,et al.  DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. , 1998, Journal of molecular biology.

[17]  Denis Thieffry,et al.  Prediction of transcriptional regulatory sites in the complete genome sequence of Escherichia coli K-12 , 1998, Bioinform..

[18]  R. Gourse,et al.  Activation of Escherichia coli rRNA Transcription by FIS during a Growth Cycle , 1998, Journal of bacteriology.

[19]  A. Ninfa,et al.  A protein-induced DNA bend increases the specificity of a prokaryotic enhancer-binding protein. , 1998, Genes & development.

[20]  T. D. Schneider,et al.  Information analysis of Fis binding sites. , 1997, Nucleic acids research.

[21]  R M Williams,et al.  Molecular aspects of the E. coli nucleoid protein, H-NS: a central controller of gene regulatory networks. , 1997, FEMS microbiology letters.

[22]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[23]  D. Ussery,et al.  DNA Binding Is Not Sufficient for H-NS-mediated Repression ofproU Expression* , 1997, The Journal of Biological Chemistry.

[24]  P. van de Putte,et al.  The integration host factor-DNA complex upstream of the early promoter of bacteriophage Mu is functionally symmetric , 1997, Journal of bacteriology.

[25]  A. Travers DNA–protein interactions: IHF - the master bender , 1997, Current Biology.

[26]  Phoebe A Rice,et al.  Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn , 1996, Cell.

[27]  F. Neidhardt,et al.  Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli , 1996, Journal of bacteriology.

[28]  R E Harrington,et al.  The effects of sequence context on DNA curvature. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Nunes-Düby,et al.  Single base-pair precision and structural rigidity in a small IHF-induced DNA loop. , 1995, Journal of molecular biology.

[30]  J. Geiselmann,et al.  In vivo interaction of the Escherichia coli integration host factor with its specific binding sites. , 1995, Nucleic acids research.

[31]  T. Mizuno,et al.  Solution structure of the DNA binding domain of a nucleoid‐associated protein, H‐NS, from Escherichia coli , 1995, FEBS letters.

[32]  H. Buc,et al.  Modulated expression of promoters containing upstream curved DNA sequences by the Escherichia coli nucleoid protein H‐NS , 1994, Molecular microbiology.

[33]  D. Ussery,et al.  The chromatin‐associated protein H‐NS alters DNA topology in vitro. , 1994, The EMBO journal.

[34]  F. Boccard,et al.  Specific interaction of IHF with RIBs, a class of bacterial repetitive DNA elements located at the 3′ end of transcription units. , 1993, The EMBO journal.

[35]  R. Austin,et al.  Thermodynamics and premelting conformational changes of phased (dA)5 tracts. , 1993, Biochemistry.

[36]  K. Rudd,et al.  Integration host factor binds to a unique class of complex repetitive extragenic DNA sequences in Escherichia coli , 1993, Molecular microbiology.

[37]  D. Haussler,et al.  Hidden Markov models in computational biology. Applications to protein modeling. , 1993, Journal of molecular biology.

[38]  Edward N. Trifonov,et al.  CURVATURE: software for the analysis of curved DNA , 1993, Comput. Appl. Biosci..

[39]  C. Ball,et al.  Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli , 1992, Journal of bacteriology.

[40]  R. C. Johnson,et al.  The Fis protein: it's not just for DNA inversion anymore , 1992, Molecular microbiology.

[41]  C. Higgins,et al.  The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression , 1992, Cell.

[42]  W. Saenger,et al.  Crystal structure of the factor for inversion stimulation FIS at 2.0 A resolution. , 1992, Journal of molecular biology.

[43]  R. Dickerson,et al.  The molecular structure of wild-type and a mutant Fis protein: relationship between mutational changes and recombinational enhancer function or DNA binding. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[45]  T. Mizuno,et al.  An Escherichia coli protein that preferentially binds to sharply curved DNA. , 1990, Journal of biochemistry.

[46]  L. Bracco,et al.  Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. , 1989, The EMBO journal.

[47]  S. Kim,et al.  DNA looping generated by DNA bending protein IHF and the two domains of lambda integrase , 1989, Science.

[48]  Annick Spassky,et al.  H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro , 1984, Nucleic Acids Res..

[49]  Kelvin H. Lee,et al.  Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli , 1999 .

[50]  P. Polaczek,et al.  Unwinding of the Escherichia coli origin of replication (oriC) can occur in the absence of initiation proteins but is stabilized by DnaA and histone-like proteins IHF or HU. , 1998, Plasmid.

[51]  George M. Church,et al.  Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K‐12 , 1997, Electrophoresis.

[52]  V. de Lorenzo,et al.  Clues and consequences of DNA bending in transcription. , 1997, Annual review of microbiology.

[53]  D. Lilley,et al.  DNA-protein: structural interactions , 1995 .

[54]  D. Ussery,et al.  The chromatin-associated protein H-NS. , 1994, Biochimie.

[55]  D. Galas,et al.  Interaction of Fis protein with DNA: bending and specificity of binding. , 1994, Biochimie.

[56]  C. Dorman Genetics of bacterial virulence , 1994 .