Rescue of retinal ganglion cells in optic nerve injury using cell-selective AAV mediated delivery of SIRT1

[1]  J. Mills,et al.  Dual SMAD inhibition and Wnt inhibition enhances the differentiation of induced pluripotent stem cells into Retinal Ganglion cells (iPSC-RGCs) , 2019, bioRxiv.

[2]  K. Shindler,et al.  Effects of Varying Intranasal Treatment Regimens in ST266-Mediated Retinal Ganglion Cell Neuroprotection , 2019, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[3]  K. Shindler,et al.  RGC Neuroprotection Following Optic Nerve Trauma Mediated By Intranasal Delivery of Amnion Cell Secretome , 2018, Investigative ophthalmology & visual science.

[4]  M. Moster,et al.  Gene therapy in optic nerve disease , 2018, Current opinion in ophthalmology.

[5]  S. Jang Traumatic Optic Neuropathy , 2018, Korean journal of neurotrauma.

[6]  J. Bennett,et al.  SIRT1 and NRF2 Gene Transfer Mediate Distinct Neuroprotective Effects Upon Retinal Ganglion Cell Survival and Function in Experimental Optic Neuritis , 2018, Investigative ophthalmology & visual science.

[7]  S. Tsang,et al.  
Genome Surgery and Gene Therapy in Retinal Disorders , 2017, The Yale journal of biology and medicine.

[8]  Philippe Hantraye,et al.  A New Promoter Allows Optogenetic Vision Restoration with Enhanced Sensitivity in Macaque Retina. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[9]  A. Rizzino,et al.  Generation of Functional Human Retinal Ganglion Cells with Target Specificity from Pluripotent Stem Cells by Chemically Defined Recapitulation of Developmental Mechanism , 2017, Stem cells.

[10]  K. Shindler,et al.  Intranasal Delivery of A Novel Amnion Cell Secretome Prevents Neuronal Damage and Preserves Function In A Mouse Multiple Sclerosis Model , 2017, Scientific Reports.

[11]  K. Chalam,et al.  Sirtuins Expression and Their Role in Retinal Diseases , 2017, Oxidative medicine and cellular longevity.

[12]  Jean Bennett,et al.  Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial , 2016, The Lancet.

[13]  Mark A. Christopher,et al.  Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ , 2016, Scientific Reports.

[14]  Ying Liu,et al.  Generation of iPSCs as a Pooled Culture Using Magnetic Activated Cell Sorting of Newly Reprogrammed Cells , 2015, PloS one.

[15]  G. Sundar,et al.  Traumatic Optic Neuropathy: A Review , 2015, Craniomaxillofacial trauma & reconstruction.

[16]  K. Shindler,et al.  SIRT1 promotes RGC survival and delays loss of function following optic nerve crush. , 2013, Investigative ophthalmology & visual science.

[17]  K. Shindler,et al.  SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells , 2012, Front. Cell. Neurosci..

[18]  K. Chalam,et al.  Evaluation of sirtuin role in neuroprotection of retinal ganglion cells in hypoxia. , 2012, Investigative ophthalmology & visual science.

[19]  K. Shindler,et al.  Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis , 2012, Front. Neur..

[20]  K. Shindler,et al.  Optic Neuritis and Retinal Ganglion Cell Loss in a Chronic Murine Model of Multiple Sclerosis , 2011, Front. Neur..

[21]  Fan Zhang,et al.  An optic nerve crush injury murine model to study retinal ganglion cell survival. , 2011, Journal of visualized experiments : JoVE.

[22]  P. Elliott,et al.  Oral Resveratrol Reduces Neuronal Damage in a Model of Multiple Sclerosis , 2010, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[23]  Kathleen A. Marshall,et al.  Safety and efficacy of gene transfer for Leber's congenital amaurosis. , 2008, The New England journal of medicine.

[24]  P. Elliott,et al.  SIRT1 activation confers neuroprotection in experimental optic neuritis. , 2007, Investigative ophthalmology & visual science.

[25]  Fiona Costello,et al.  Quantifying axonal loss after optic neuritis with optical coherence tomography. , 2006, Annals of neurology.

[26]  R. Kardon,et al.  Quantifying axonal loss after optic neuritis with optical coherence tomography , 2006 .

[27]  S. Nemoto,et al.  SIRT1 Functionally Interacts with the Metabolic Regulator and Transcriptional Coactivator PGC-1α* , 2005, Journal of Biological Chemistry.

[28]  R. Douglas,et al.  Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. , 2004, Investigative ophthalmology & visual science.

[29]  H. Quigley,et al.  Gene therapy for optic nerve disease , 2004, Eye.

[30]  Delin Chen,et al.  Negative Control of p53 by Sir2α Promotes Cell Survival under Stress , 2001, Cell.

[31]  G. Acland,et al.  Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV , 1999, Vision Research.

[32]  M. Joseph,et al.  Traumatic optic neuropathy. , 1994, Seminars in ophthalmology.

[33]  L. Guarente,et al.  Negative control of p53 by Sir2alpha promotes cell survival under stress. , 2001, Cell.