A super lithium-rich red-clump star in the open cluster Trumpler 5

Context. The existence of lithium-rich low-mass red giant stars still represents a challenge for stellar evolution models. Stellar clusters are privileged environments for this kind of investigation. Aims. To investigate the chemical abundance pattern of the old open cluster Trumpler 5, we observed a sample of four red-clump stars with high-resolution optical spectrographs. One of them (#3416) reveals extremely strong lithium lines in its spectrum. Methods. One-dimensional, local thermodynamic equilibrium analysis was performed on the spectra of the observed stars. A 3DNLTE analysis was performed to derive the lithium abundance of star #3416. Results. Star #3416 is super Li-rich with A(Li) = 3.75 dex. The lack of 6 Li enrichment ( 6 Li/ 7 Li < 2%), the low carbon isotopic ratio ( 12 C/ 13 C = 14 3), and the lack of evidence for radial velocity variation or enhanced rotational velocity (v sini = 2:8 km s 1 ) all suggest that lithium production has occurred in this star through the Cameron & Fowler mechanism. Conclusions. We identified a super Li-rich core helium-burning, red-clump star in an open cluster. Internal production is the most likely cause of the observed enrichment. Given the expected short duration of a star’s Li-rich phase, enrichment is likely to have occurred at the red clump or in the immediately preceding phases, namely during the He-flash at the tip of the red giant branch (RGB) or while ascending the brightest portion of the RGB.

[1]  J. De Ridder,et al.  OLD PUZZLE, NEW INSIGHTS: A LITHIUM-RICH GIANT QUIETLY BURNING HELIUM IN ITS CORE , 2014, 1402.6339.

[2]  P. François,et al.  Lithium abundance in the metal-poor open cluster NGC 2243 , 2013, 1303.3027.

[3]  B. Anthony-Twarog,et al.  A LITHIUM-RICH RED GIANT BELOW THE CLUMP IN THE KEPLER CLUSTER, NGC 6819 , 2013, 1303.2984.

[4]  S. Martell,et al.  Lithium-rich field giants in the Sloan Digital Sky Survey , 2013, 1301.0163.

[5]  T. Rivinius,et al.  Circumstellar Dynamics at High Resolution , 2012 .

[6]  B. Fields,et al.  Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud , 2012, Nature.

[7]  G. Nowak,et al.  BD+48 740—Li OVERABUNDANT GIANT STAR WITH A PLANET: A CASE OF RECENT ENGULFMENT? , 2012, 1206.4938.

[8]  P. Denissenkov A NEW TWIST IN THE EVOLUTION OF LOW-MASS STARS , 2012, 1203.1948.

[9]  W. Schaffenberger,et al.  Simulations of stellar convection with CO5BOLD , 2011, J. Comput. Phys..

[10]  B. Gibson,et al.  METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY , 2011, The Astrophysical Journal.

[11]  D. Geisler,et al.  Bimodality of light and s-elements in M4 (NGC 6121) , 2011, 1109.0973.

[12]  C. Meakin,et al.  A NEW STELLAR MIXING PROCESS OPERATING BELOW SHELL CONVECTION ZONES FOLLOWING OFF-CENTER IGNITION , 2011, 1108.4433.

[13]  E. Muller,et al.  Multidimensional hydrodynamic simulations of the hydrogen injection flash , 2011, 1106.3260.

[14]  Brno,et al.  Lithium-rich giants in the Galactic thick disk , 2011, 1103.1658.

[15]  B. E. Reddy,et al.  ORIGIN OF LITHIUM ENRICHMENT IN K GIANTS , 2011, 1102.2299.

[16]  C. Charbonnel,et al.  Thermohaline instability and rotation-induced mixing I. Low- and intermediate-mass solar metallicity stars up to the end of the AGB , 2010, 1006.5359.

[17]  The metal-poor end of the Spite plateau - I. Stellar parameters, metallicities, and lithium abundances , 2010, 1003.4510.

[18]  M. Asplund,et al.  Departures from LTE for neutral Li in late-type stars , 2009, 0906.0899.

[19]  G. Piotto,et al.  Spectroscopic and photometric evidence of two stellar populations in the Galactic globular cluster NGC 6121 (M 4) , 2008, 0808.1414.

[20]  J. Lattanzio,et al.  Compulsory Deep Mixing of 3He and CNO Isotopes in the Envelopes of Low-Mass Red Giants , 2007, 0706.2710.

[21]  V. Tatischeff,et al.  Is 6Li in metal-poor halo stars produced in situ by solar-like flares? , 2006, astro-ph/0610756.

[22]  R. Schiavon,et al.  A library of high resolution synthetic stellar spectra from 300 nm to 1.8 μm with solar and α-enhanced composition , 2005, astro-ph/0505511.

[23]  N. Santos,et al.  On the nature of lithium-rich giant stars. Constraints from beryllium abundances , 2005, astro-ph/0504133.

[24]  G. Lodato,et al.  Memorie della Società Astronomica Italiana , 2005 .

[25]  R. Gratton,et al.  Abundance Variations within Globular Clusters , 2004 .

[26]  J. Clariá,et al.  The old open cluster Trumpler 5: a reddened, metal-poor anticentre cluster , 2004 .

[27]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[28]  C. Sneden,et al.  A Survey for Enhanced Lithium in 261 Globular Cluster Giants , 2000 .

[29]  Santiago Arribas,et al.  The effective temperature scale of giant stars (F0–K5) - II. Empirical calibration of versus colours and [Fe/H] , 1999 .

[30]  U. T. Austin,et al.  An Extremely Lithium-rich Bright Red Giant in the Globular Cluster M3 , 1999, astro-ph/9904152.

[31]  B. Carney,et al.  Lithium and r-Process Abundances in the Population II Cepheid M5 V42 , 1998 .

[32]  J. Kaluzny CCD photometry of distant open clusters - IV. Trumpler 5 , 1998 .

[33]  C. Sneden The nitrogen abundance of the very metal-poor star HD 122563. , 1973 .

[34]  A. G. W. Cameron,et al.  Lithium and the s-process in red-giant stars , 1971 .

[35]  E. S. Keeping,et al.  Introduction to statistical inference , 1958 .