High-order symmetric multistep cosine methods

In this paper, a general procedure is given to construct explicit high-order symmetric multistep cosine methods. For these integrators, stability for stiff problems and order of consistency under hypotheses of regularity are justified. We also study when resonances can turn up for the methods suggested and give a simple technique to filter them without losing order of consistency. Particular methods of order eight and ten are explicitly constructed and their high efficiency is numerically shown when integrating Euler-Bernoulli equation.

[1]  M. Hochbruck,et al.  Exponential Runge--Kutta methods for parabolic problems , 2005 .

[2]  M. J. Moreta,et al.  STABILITY AND RESONANCES OF MULTISTEP COSINE METHODS , 2012 .

[3]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[4]  B. Cano,et al.  Conservation of invariants by symmetric multistep cosine methods for second-order partial differential equations , 2013 .

[5]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[6]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[7]  V. Dougalis,et al.  Cosine methods for nonlinear second-order hyperbolic equations , 1989 .

[8]  Mari Paz Calvo,et al.  A class of explicit multistep exponential integrators for semilinear problems , 2006, Numerische Mathematik.

[9]  B. Cano,et al.  Multistep cosine methods for second-order partial differential systems , 2010 .

[10]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[11]  S. Tremaine,et al.  Symmetric Multistep Methods for the Numerical Integration of Planetary Orbits , 1990 .

[12]  Gerald D. Quinlan Resonances and instabilities in symmetric multistep methods , 1999 .

[13]  Manuel Calvo,et al.  Two-Step High Order Starting Values for Implicit Runge–Kutta Methods , 2003, Adv. Comput. Math..

[14]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[15]  Ernst Hairer,et al.  Symmetric multistep methods over long times , 2004, Numerische Mathematik.

[16]  B. Cano,et al.  Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems , 1998 .

[17]  A. Ostermann,et al.  A Class of Explicit Exponential General Linear Methods , 2006 .

[18]  E. Tadmor The exponential accuracy of Fourier and Chebyshev differencing methods , 1986 .

[19]  B. Cano,et al.  Conserved quantities of some Hamiltonian wave equations after full discretization , 2006, Numerische Mathematik.

[20]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[21]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[22]  F. H. Jackson q-Difference Equations , 1910 .