Synergy Effect of Both 2,2,2-Trifluoroethylamine Hydrochloride and SnF2 for Highly Stable FASnI3−x Clx Perovskite Solar Cells

[1]  X. Liang,et al.  Solvent Engineering Improves Efficiency of Lead-Free Tin-Based Hybrid Perovskite Solar Cells beyond 9% , 2018, ACS Energy Letters.

[2]  E. Diau,et al.  Control of Crystal Structures and Optical Properties with Hybrid Formamidinium and 2-Hydroxyethylammonium Cations for Mesoscopic Carbon-Electrode Tin-Based Perovskite Solar Cells , 2018, ACS Energy Letters.

[3]  Chunhui Huang,et al.  Improving Performance of Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells by Tin Source Purification , 2018, Solar RRL.

[4]  Y. Hao,et al.  High‐Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustion‐Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20% , 2018 .

[5]  T. Noda,et al.  Enhanced Photovoltaic Performance of FASnI3-Based Perovskite Solar Cells with Hydrazinium Chloride Coadditive , 2018, ACS Energy Letters.

[6]  M. Wasielewski,et al.  Diammonium Cations in the FASnI3 Perovskite Structure Lead to Lower Dark Currents and More Efficient Solar Cells , 2018 .

[7]  Chun‐Sing Lee,et al.  Direct observation of cation-exchange in liquid-to-solid phase transformation in FA1−xMAxPbI3 based perovskite solar cells , 2018 .

[8]  A. Djurišić,et al.  Molecule‐Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell , 2018, Advanced materials.

[9]  Liyuan Han,et al.  Improving the Performance of Inverted Formamidinium Tin Iodide Perovskite Solar Cells by Reducing the Energy-Level Mismatch , 2018 .

[10]  Jia Zhu,et al.  CsSnI3 Solar Cells via an Evaporation‐Assisted Solution Method , 2018 .

[11]  X. Hou,et al.  Bilateral Interface Engineering toward Efficient 2D–3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells , 2018 .

[12]  M. Loi,et al.  Highly Reproducible Sn‐Based Hybrid Perovskite Solar Cells with 9% Efficiency , 2018 .

[13]  Seong Sik Shin,et al.  Reducing Carrier Density in Formamidinium Tin Perovskites and Its Beneficial Effects on Stability and Efficiency of Perovskite Solar Cells , 2018 .

[14]  Jia Zhu,et al.  Tin‐Based Perovskite with Improved Coverage and Crystallinity through Tin‐Fluoride‐Assisted Heterogeneous Nucleation , 2018 .

[15]  M. Loi,et al.  Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites , 2018, Nature Communications.

[16]  E. Diau,et al.  Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells. , 2017, Angewandte Chemie.

[17]  Wei Huang,et al.  Hydrazinium Salt as Additive To Improve Film Morphology and Carrier Lifetime for High-Efficiency Planar-Heterojunction Perovskite Solar Cells via One-Step Method. , 2017, ACS applied materials & interfaces.

[18]  M. Wasielewski,et al.  Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI3 Perovskites. , 2017, Journal of the American Chemical Society.

[19]  M. Wasielewski,et al.  Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3 , 2017, Science Advances.

[20]  Chunhui Huang,et al.  Mixed‐Organic‐Cation Tin Iodide for Lead‐Free Perovskite Solar Cells with an Efficiency of 8.12% , 2017, Advanced science.

[21]  Hang Hu,et al.  Low-toxic metal halide perovskites: opportunities and future challenges , 2017 .

[22]  Liang Ma,et al.  Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application. , 2017, Journal of the American Chemical Society.

[23]  M. Kanatzidis,et al.  Multichannel Interdiffusion Driven FASnI3 Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Lead‐Free Perovskite Solar Cells , 2017, Advanced materials.

[24]  Dongwen Yang,et al.  Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. , 2017, Journal of the American Chemical Society.

[25]  Ying Liu,et al.  Pressure-Induced Polymorphic, Optical, and Electronic Transitions of Formamidinium Lead Iodide Perovskite. , 2017, The journal of physical chemistry letters.

[26]  M. Wasielewski,et al.  Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden–Popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 Perovskites , 2017 .

[27]  Wei Huang,et al.  Lead‐Free Organic–Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives , 2017, Advanced materials.

[28]  M. Kanatzidis,et al.  Performance Enhancement of Lead-Free Tin-Based Perovskite Solar Cells with Reducing Atmosphere-Assisted Dispersible Additive , 2017 .

[29]  T. Rath,et al.  Progress on lead-free metal halide perovskites for photovoltaic applications: a review , 2017, Monatshefte für Chemie - Chemical Monthly.

[30]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[31]  Dongsheng Xu,et al.  Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbI3−xClx) for Planar Heterojunction Perovskite Solar Cells , 2017 .

[32]  Wei Chen,et al.  Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells. , 2017, The journal of physical chemistry letters.

[33]  M. Wasielewski,et al.  Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. , 2017, Journal of the American Chemical Society.

[34]  S. Pang,et al.  Heterojunction‐Depleted Lead‐Free Perovskite Solar Cells with Coarse‐Grained B‐γ‐CsSnI3 Thin Films , 2016 .

[35]  R. Walton,et al.  Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics , 2016, Nature Energy.

[36]  Liduo Wang,et al.  Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K , 2016 .

[37]  Kai Zhu,et al.  Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. , 2016, Journal of the American Chemical Society.

[38]  Yanfa Yan,et al.  Lead‐Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22% , 2016, Advanced materials.

[39]  Wei Chen,et al.  Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells , 2016 .

[40]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[41]  Seong Sik Shin,et al.  Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF₂-Pyrazine Complex. , 2016, Journal of the American Chemical Society.

[42]  G. Cui,et al.  The fabrication of formamidinium lead iodide perovskite thin films via organic cation exchange. , 2016, Chemical communications.

[43]  Tobin J Marks,et al.  Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[44]  Wei Lin Leong,et al.  Formamidinium tin-based perovskite with low Eg for photovoltaic applications , 2015 .

[45]  Nripan Mathews,et al.  Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation , 2014, Advanced materials.

[46]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[47]  Paolo Umari,et al.  Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications , 2014, Scientific Reports.

[48]  J. J. Wang,et al.  Schottky solar cells based on CsSnI3 thin-films , 2012 .