On Lower Bounds for Nonstandard Deterministic Estimation

We consider deterministic parameter estimation and the situation where the probability density function (p.d.f.) parameterized by unknown deterministic parameters results from the marginalization of a joint p.d.f. depending on random variables as well. Unfortunately, in the general case, this marginalization is mathematically intractable, which prevents from using the known standard deterministic lower bounds (LBs) on the mean squared error (MSE). Actually the general case can be tackled by embedding the initial observation space in a hybrid one where any standard LB can be transformed into a modified one fitted to nonstandard deterministic estimation, at the expense of tightness however. Furthermore, these modified LBs (MLBs) appears to include the submatrix of hybrid LBs which is an LB for the deterministic parameters. Moreover, since in the nonstandard estimation, maximum likelihood estimators (MLEs) can be no longer derived, suboptimal nonstandard MLEs (NSMLEs) are proposed as being a substitute. We show that any standard LB on the MSE of MLEs has a nonstandard version lower bounding the MSE of NSMLEs. We provide an analysis of the relative performance of the NSMLEs, as well as a comparison with the MLBs for a large class of estimation problems. Last, the general approach introduced is exemplified, among other things, with a new look at the well-known Gaussian complex observation models.

[1]  Umberto Mengali,et al.  The modified Cramer-Rao bound in vector parameter estimation , 1998, IEEE Trans. Commun..

[2]  P. Larzabal,et al.  On the High-SNR Conditional Maximum-Likelihood Estimator Full Statistical Characterization , 2006, IEEE Transactions on Signal Processing.

[3]  P. Stoica,et al.  The stochastic CRB for array processing: a textbook derivation , 2001, IEEE Signal Processing Letters.

[4]  Arie Yeredor,et al.  The joint MAP-ML criterion and its relation to ML and to extended least-squares , 2000, IEEE Trans. Signal Process..

[5]  Bin Tang,et al.  Modified Cramer-Rao Bounds for Parameter Estimation of Hybrid Modulated Signal Combining PRBC and LFM , 2014, CSE.

[6]  Irwin Guttman,et al.  Bhattacharyya Bounds without Regularity Assumptions , 1952 .

[7]  Dmitriy Shutin,et al.  Cramér–Rao bounds for L-band digital aeronautical communication system type 1 based passive multiple-input multiple-output radar , 2016 .

[8]  Jian Li,et al.  Maximum likelihood angle estimation for signals with known waveforms , 1993, IEEE Trans. Signal Process..

[9]  Jeffrey L. Krolik,et al.  Barankin bounds for source localization in an uncertain ocean environment , 1999, IEEE Trans. Signal Process..

[10]  G. Darmois,et al.  Sur les limites de la dispersion de certaines estimations , 1945 .

[11]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[12]  Peter M. Schultheiss,et al.  Array shape calibration using sources in unknown locations-Part I: Far-field sources , 1987, IEEE Trans. Acoust. Speech Signal Process..

[13]  Marc Moeneclaey,et al.  On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in the presence of nuisance parameters , 1998, IEEE Trans. Commun..

[14]  Hagit Messer,et al.  Notes on the Tightness of the Hybrid CramÉr–Rao Lower Bound , 2009, IEEE Transactions on Signal Processing.

[15]  J. Litva,et al.  Radar Array Processing , 1993 .

[16]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[17]  Edward M. Hofstetter,et al.  Barankin Bounds on Parameter Estimation , 1971, IEEE Trans. Inf. Theory.

[18]  Brian D. Rigling,et al.  Cramér-Rao Bounds for UMTS-Based Passive Multistatic Radar , 2014, IEEE Transactions on Signal Processing.

[19]  Joseph Tabrikian,et al.  Uniformly Best Biased Estimators in Non-Bayesian Parameter Estimation , 2011, IEEE Transactions on Information Theory.

[20]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[21]  Fulvio Gini,et al.  Least Squares Estimation and Cramér–Rao Type Lower Bounds for Relative Sensor Registration Process , 2011, IEEE Transactions on Signal Processing.

[22]  Jean Pierre Delmas Closed-Form Expressions of the Exact Cramer-Rao Bound for Parameter Estimation of BPSK, MSK, or QPSK Waveforms , 2006, IEEE Signal Processing Letters.

[23]  Eric Chaumette,et al.  Lower bounds on the mean square error derived from mixture of linear and non-linear transformations of the unbiasness definition , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[24]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[25]  MARC MOENECLAEY,et al.  A Fundamental Lower Bound on the Performance of Practical Joint Carrier and Bit Synchronizers , 1984, IEEE Trans. Commun..

[26]  Umberto Mengali,et al.  The modified Cramer-Rao bound and its application to synchronization problems , 1994, IEEE Trans. Commun..

[27]  Jonathan S. Abel,et al.  A bound on mean-square-estimate error , 1993, IEEE Trans. Inf. Theory.

[28]  James V. Krogmeier,et al.  Modified Bhattacharyya bounds and their application to timing estimation , 2002, 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609).

[29]  Josef A. Nossek,et al.  Performance analysis for pilot-based 1-bit channel estimation with unknown quantization threshold , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[30]  Fulvio Gini,et al.  A radar application of a modified Cramer-Rao bound: parameter estimation in non-Gaussian clutter , 1998, IEEE Trans. Signal Process..

[31]  Petre Stoica,et al.  Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[32]  Joseph Tabrikian,et al.  Hybrid lower bound via compression of the sampled CLR function , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[33]  Philippe Forster,et al.  On lower bounds for deterministic parameter estimation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[34]  Hagit Messer,et al.  New lower bounds on frequency estimation of a multitone random signal in noise , 1989 .

[35]  Benoit Geller,et al.  On the Hybrid Cramér Rao Bound and Its Application to Dynamical Phase Estimation , 2008, IEEE Signal Processing Letters.

[36]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[37]  Eric Chaumette,et al.  A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators , 2008, IEEE Transactions on Signal Processing.

[38]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[39]  Eric Chaumette,et al.  New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.

[40]  Olivier Besson Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises , 2016, IEEE Transactions on Signal Processing.

[41]  Christ D. Richmond,et al.  Capon algorithm mean-squared error threshold SNR prediction and probability of resolution , 2005, IEEE Transactions on Signal Processing.

[42]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.

[43]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part II: Bayesian Bounds , 2010, IEEE Transactions on Information Theory.

[44]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[45]  W. R. Blischke,et al.  On Non-Regular Estimation. I. Variance Bounds for Estimators of Location Parameters , 1969 .

[46]  J. Kiefer On Minimum Variance Estimators , 1952 .

[47]  Eric Chaumette,et al.  Hybrid Barankin–Weiss–Weinstein Bounds , 2015, IEEE Signal Processing Letters.

[48]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[49]  Ehud Weinstein,et al.  A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.

[50]  R. W. Miller,et al.  A modified Cramér-Rao bound and its applications (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[51]  M. Fréchet Sur l'extension de certaines evaluations statistiques au cas de petits echantillons , 1943 .

[52]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[53]  C. Blyth,et al.  Necessary and Sufficient Conditions for Inequalities of Cramer-Rao Type , 1974 .

[54]  Fulvio Gini,et al.  On the application of the expectation-maximisation algorithm to the relative sensor registration problem , 2013 .

[55]  Björn E. Ottersten,et al.  Sensor array processing based on subspace fitting , 1991, IEEE Trans. Signal Process..

[56]  Fredrik Athley,et al.  Threshold region performance of maximum likelihood direction of arrival estimators , 2005, IEEE Transactions on Signal Processing.

[57]  Yoram Bresler,et al.  A compact Cramer-Rao bound expression for parametric estimation of superimposed signals , 1992, IEEE Trans. Signal Process..

[58]  Marc Moeneclaey A Simple Lower Bound on the Linearized Performance of Practical Symbol Synchronizers , 1983, IEEE Trans. Commun..

[59]  R. Fisher 001: On an Absolute Criterion for Fitting Frequency Curves. , 1912 .

[60]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.

[61]  Eric Chaumette,et al.  Lower bounds for non standard deterministic estimation , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).

[62]  Joseph Tabrikian,et al.  Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part I: Performance Bounds , 2015, IEEE Transactions on Signal Processing.

[63]  Fulvio Gini,et al.  On the use of Cramer-Rao-like bounds in the presence of random nuisance parameters , 2000, IEEE Trans. Commun..

[64]  D. G. Chapman,et al.  Minimum Variance Estimation Without Regularity Assumptions , 1951 .

[65]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[66]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[67]  F. Glave,et al.  A new look at the Barankin lower bound , 1972, IEEE Trans. Inf. Theory.

[68]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[69]  J. Hammersley On Estimating Restricted Parameters , 1950 .

[70]  Lawrence P. Seidman,et al.  A useful form of the Barankin lower bound and its application to PPM threshold analysis , 1969, IEEE Trans. Inf. Theory.

[71]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .