Generalized Adaptive Backstepping Synchronization for Non-identical Parametrically Excited Systems

In this paper, we investigate the synchronization of chaoti c systems consisting of non-identical parametrically excited oscillators. The backstepping design, which is a recursive procedure that combines the choice of a Lyapunov function with the design of a controller is generalized and employed so as to achieve global chaos synchronization between a parametrically excited gyroscope and each of the parametrically excited pendulum and Duffing oscillator. Numerical simulations are implemented to verify the results.

[1]  Uchechukwu E. Vincent,et al.  Chaos Synchronization Using Active Control and Backstepping Control: A Comparative Analysis , 2008 .

[2]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[3]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[4]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[5]  Er-Wei Bai,et al.  Synchronization of two Lorenz systems using active control , 1997 .

[6]  Uchechukwu E. Vincent,et al.  Synchronization of chaos in non-identical parametrically excited systems , 2009 .

[7]  Yen-Sheng Chen,et al.  Anti-control of chaos of single time-scale brushless DC motor. , 2006, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[8]  H.-K. Chen CHAOS AND CHAOS SYNCHRONIZATION OF A SYMMETRIC GYRO WITH LINEAR-PLUS-CUBIC DAMPING , 2002 .

[9]  Uchechukwu E. Vincent,et al.  Chaos control of 4D chaotic systems using recursive backstepping nonlinear controller , 2007 .

[10]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Uchechukwu E. Vincent,et al.  Synchronization of identical and non-identical 4-D chaotic systems using active control , 2008 .

[13]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[14]  Saverio Mascolo,et al.  Backstepping design for controlling Lorenz chaos , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[15]  Ahmad Harb,et al.  Nonlinear chaos control in a permanent magnet reluctance machine , 2004 .

[16]  Celso Grebogi,et al.  Erratum: ``Controlling chaos'' [Phys. Rev. Lett. 64, 1196 (1990)] , 1990 .

[17]  U. E. Vincent CONTROLLING DIRECTED TRANSPORT IN INERTIA RATCHETS VIA ADAPTIVE BACKSTEPPING CONTROL , 2007 .

[18]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[19]  Yong Xu,et al.  Chaos control by harmonic excitation with proper random phase , 2004 .

[20]  张超,et al.  Synchronization between two different chaotic systems with nonlinear feedback control , 2007 .

[21]  Jiye Zhang,et al.  Synchronizing chaotic systems using backstepping design , 2003 .

[22]  Liu Chang-kai Synchronizing Different Chaotic Systems Using Active Sliding Mode Control , 2009 .

[23]  G. Du,et al.  CHAOS SYNCHRONIZATION OF TWO PARAMETRICALLY EXCITED PENDULUMS , 1999 .

[24]  Shuzhi Sam Ge,et al.  Adaptive backstepping Control of a Class of Chaotic Systems , 2000, Int. J. Bifurc. Chaos.

[25]  Mohammad Haeri,et al.  Synchronizing different chaotic systems using active sliding mode control , 2007 .

[26]  Wei Xu,et al.  Global synchronization of two parametrically excited systems using active control , 2006 .

[27]  Zhenya Yan,et al.  Chaos Q–S synchronization between Rössler system and the new unified chaotic system , 2005 .

[28]  Wei Xu,et al.  Synchronization of two chaotic nonlinear gyros using active control , 2005 .

[29]  Bernd Pompe,et al.  Experiments on periodic and chaotic motions of a parametrically forced pendulum , 1985 .

[30]  Hao Zhang,et al.  Controlling and tracking hyperchaotic Rössler system via active backstepping design , 2005 .

[31]  S. Bishop,et al.  Zones of chaotic behaviour in the parametrically excited pendulum , 1996 .

[32]  J. A. Laoye,et al.  Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control , 2007 .

[33]  Christiansen,et al.  Unstable periodic orbits in the parametrically excited pendulum. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[34]  Uchechukwu E. Vincent,et al.  Chaos synchronization between single and double wells Duffing–Van der Pol oscillators using active control , 2008 .

[35]  Yen-Sheng Chen,et al.  Anti-control of chaos of single time-scale brushless DC motor , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.