Coherence-enhanced synchrotron radiology: simple theory and practical applications

The advanced characteristics of synchrotron x-ray sources make it possible to implement radiology with powerful and innovative approaches. We review in simple terms the conceptual background of such approaches, then we present a number of selected examples. The practical tests concern life-sciences specimens as well as materials-science systems.

[1]  J. M. Martínez-Duart,et al.  Electrodeposition of hydroxyapatite coatings in basic conditions. , 2000, Biomaterials.

[2]  M. R. Philpott,et al.  Molecular dynamics simulation of the adsorption of benzene on charged metal electrodes in the presence of aqueous electrolyte , 1995 .

[3]  S. Wilkins,et al.  Contrast and resolution in imaging with a microfocus x-ray source , 1997 .

[4]  B. Popov,et al.  Hydrogen permeation inhibition by thin layer Zn–Ni alloy electrodeposition , 1998 .

[5]  J. Bradley,et al.  Ion transport and deposit growth in spatially coupled bipolar electrochemistry , 1999 .

[6]  Wolfgang Ludwig,et al.  Penetration of liquid gallium into the grain boundaries of aluminium: a synchrotron radiation microtomographic investigation , 2000 .

[7]  Charles A. Brau,et al.  Production of tunable monochromatic x rays by the Vanderbilt free-electron laser , 1999, Photonics West.

[8]  M. Monev,et al.  Effect of brighteners on hydrogen evolution during zinc electroplating from zincate electrolytes , 1998 .

[9]  W Thomlinson,et al.  Research at the European Synchrotron Radiation Facility medical beamline. , 2000, Cellular and molecular biology.

[10]  A. Snigirev,et al.  On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation , 1995 .

[11]  B. Lai,et al.  Use of photoelectron microscopes as X-ray detectors for imaging and other applications , 1999 .

[12]  C. Roques-carmes,et al.  The Influence of Testing Temperature and Thermal History on the Intergranular Embrittlement and Penetration of Aluminium by Liquid Gallium , 1973 .

[13]  Synchrotron light science: From flux to brightness to coherence , 1998 .

[14]  C. F. Old,et al.  Liquid metal embrittlement , 1979 .

[15]  M. R. Philpott,et al.  Molecular Dynamics Study of Interfacial Electric Fields , 1996 .

[16]  M. R. Philpott,et al.  Electric potential near a charged metal surface in contact with aqueous electrolyte , 1996 .

[17]  Lothar Martens,et al.  Modelling of current and potential distributions in louvered and extended metal electrodes , 1995 .

[18]  D. R. Jones,et al.  Mechanisms of liquid metal induced embrittlement , 1997 .

[19]  Giorgio Margaritondo,et al.  Double take makes the most of X-rays to enhance synchrotron images , 1998 .

[20]  E. Pisano,et al.  Diffraction enhanced x-ray imaging. , 1997, Physics in medicine and biology.

[21]  K. Nugent,et al.  Quantitative Phase Imaging Using Hard X Rays. , 1996, Physical review letters.

[22]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[23]  E Castelli,et al.  Low-dose phase contrast x-ray medical imaging. , 1998, Physics in medicine and biology.

[24]  W. Johnson II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids , 1875, Proceedings of the Royal Society of London.

[25]  G. Tromba,et al.  COHERENCE-BASED EDGE DIFFRACTION SHARPENING OF X-RAY IMAGES : A SIMPLE MODEL , 1999 .

[26]  E Castelli,et al.  Mammography with synchrotron radiation: phase-detection techniques. , 2000, Radiology.

[27]  Hong-Ming Lin,et al.  Coherence-enhanced synchrotron radiology : refraction versus diffraction mechanisms. , 1999 .

[28]  R. Price,et al.  Near-monochromatic X-ray beams produced by the free electron laser and Compton backscatter. , 1990, Investigative radiology.

[29]  Giorgio Margaritondo,et al.  Introduction to synchrotron radiation , 1988 .

[30]  C. H. Chen,et al.  Electrochemistry: Building on bubbles in metal electrodeposition , 2002, Nature.