Roles of Stress Response in Autophagy Processes and Aging-Related Diseases

The heat shock factor 1 (HSF1)-mediated stress response pathway and autophagy processes play important roles in the maintenance of proteostasis. Autophagy processes are subdivided into three subtypes: macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy. Recently, molecular chaperones and co-factors were shown to be involved in the selective degradation of substrates by these three autophagy processes. This evidence suggests that autophagy processes are regulated in a coordinated manner by the HSF1-mediated stress response pathway. Recently, various studies have demonstrated that proteostasis pathways including HSF1 and autophagy are implicated in longevity. Furthermore, they serve as therapeutic targets for aging-related diseases such as cancer and neurodegenerative diseases. In the future, these studies will underpin the development of therapies against various diseases.

[1]  D. Lombard,et al.  PTEN is both an activator and a substrate of chaperone-mediated autophagy. , 2023, The Journal of cell biology.

[2]  Huixia Lu,et al.  LAMP2A, LAMP2B and LAMP2C: similar structures, divergent roles , 2023, Autophagy.

[3]  Dudley Lamming,et al.  Targeting the biology of aging with mTOR inhibitors , 2023, Nature Aging.

[4]  G. Fazeli,et al.  Ferroptosis: mechanisms and implications for cancer development and therapy response. , 2023, Trends in cell biology.

[5]  G. Wang,et al.  Adult-Onset Neuronal Ceroid Lipofuscinosis With a Novel DNAJC5 Mutation Exhibits Aberrant Protein Palmitoylation , 2022, Frontiers in Aging Neuroscience.

[6]  Yong-Bin Yan,et al.  CCT2 is an aggrephagy receptor for clearance of solid protein aggregates , 2022, Cell.

[7]  F. Madeo,et al.  The ups and downs of caloric restriction and fasting: from molecular effects to clinical application , 2021, EMBO molecular medicine.

[8]  Jared A Gatto,et al.  Circadian autophagy drives iTRF-mediated longevity , 2021, Nature.

[9]  L. Saidi,et al.  Abnormal triaging of misfolded proteins by adult neuronal ceroid lipofuscinosis-associated DNAJC5/CSPα mutants causes lipofuscin accumulation , 2021, bioRxiv.

[10]  R. Russell,et al.  Regulation of Autophagy Enzymes by Nutrient Signaling. , 2021, Trends in biochemical sciences.

[11]  D. Averill-Bates,et al.  Heat shock increases levels of reactive oxygen species, autophagy and apoptosis. , 2020, Biochimica et biophysica acta. Molecular cell research.

[12]  H. Kalonia,et al.  SIRT1 Promotes Neuronal Fortification in Neurodegenerative Diseases through Attenuation of Pathological Hallmarks and Enhancement of Cellular Lifespan , 2020, Current neuropharmacology.

[13]  A. Jenny,et al.  Differential activation of eMI by distinct forms of cellular stress , 2020, Autophagy.

[14]  Bei Sun,et al.  Ferroptosis: past, present and future , 2020, Cell Death & Disease.

[15]  T. Lamark,et al.  Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. , 2020, Journal of molecular biology.

[16]  M. Ehrmann,et al.  The ubiquitin‐conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage , 2019, EMBO reports.

[17]  Q. Tong,et al.  SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity , 2019, Cell Death & Differentiation.

[18]  A. Chiò,et al.  Proteostasis and ALS: protocol for a phase II, randomised, double-blind, placebo-controlled, multicentre clinical trial for colchicine in ALS (Co-ALS) , 2019, BMJ Open.

[19]  A. Cuervo,et al.  Proteome-wide analysis of chaperone-mediated autophagy targeting motifs , 2019, PLoS biology.

[20]  Y. Okada,et al.  Suppression of autophagic activity by Rubicon is a signature of aging , 2019, Nature Communications.

[21]  M. Hipp,et al.  The proteostasis network and its decline in ageing , 2019, Nature Reviews Molecular Cell Biology.

[22]  Junying Yuan,et al.  Chaperone-mediated autophagy is involved in the execution of ferroptosis , 2019, Proceedings of the National Academy of Sciences.

[23]  G. Kroemer,et al.  Biological Functions of Autophagy Genes: A Disease Perspective , 2019, Cell.

[24]  J. Grantham,et al.  The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: implications for cancer cell biology , 2018, Cell Stress and Chaperones.

[25]  Y. Sakai,et al.  Three Distinct Types of Microautophagy Based on Membrane Dynamics and Molecular Machineries , 2018, BioEssays : news and reviews in molecular, cellular and developmental biology.

[26]  A. Cuervo,et al.  The coming of age of chaperone-mediated autophagy , 2018, Nature Reviews Molecular Cell Biology.

[27]  G. Bhagat,et al.  Disruption of the beclin 1/Bcl-2 autophagy regulatory complex promotes longevity in mice , 2018, Nature.

[28]  D. Klionsky,et al.  Cargo recognition and degradation by selective autophagy , 2018, Nature Cell Biology.

[29]  J. Landry,et al.  HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  A. Cuervo,et al.  Chaperone-mediated autophagy and endosomal microautophagy: Jointed by a chaperone , 2017, The Journal of Biological Chemistry.

[31]  B. Li,et al.  HSF1 upregulates ATG4B expression and enhances epirubicin-induced protective autophagy in hepatocellular carcinoma cells. , 2017, Cancer letters.

[32]  R. Xavier,et al.  Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine , 2017, Science.

[33]  M. Komatsu,et al.  Autophagy-monitoring and autophagy-deficient mice , 2017, Autophagy.

[34]  A. Ballabio,et al.  Molecular definitions of autophagy and related processes , 2017, The EMBO journal.

[35]  A. Dinkova-Kostova,et al.  Regulation of the mammalian heat shock factor 1 , 2017, The FEBS journal.

[36]  D. Allison,et al.  Caloric restriction improves health and survival of rhesus monkeys , 2017, Nature Communications.

[37]  D. Rubinsztein,et al.  CCT complex restricts neuropathogenic protein aggregation via autophagy , 2016, Nature Communications.

[38]  Masaki Tanaka,et al.  HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis , 2016, Autophagy.

[39]  V. Deretic,et al.  TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. , 2016, Developmental cell.

[40]  H. Shu,et al.  Sumoylation Promotes the Stability of the DNA Sensor cGAS and the Adaptor STING to Regulate the Kinetics of Response to DNA Virus. , 2016, Immunity.

[41]  D. Sinclair,et al.  Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds , 2016, Nature Reviews Molecular Cell Biology.

[42]  L. Santambrogio,et al.  Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy* , 2016, The Journal of Biological Chemistry.

[43]  G. Gao,et al.  Essential control of mitochondrial morphology and function by chaperone-mediated autophagy through degradation of PARK7 , 2016, Autophagy.

[44]  C. Cereda,et al.  Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases , 2016, Scientific Reports.

[45]  Xiaoming Jiang,et al.  Chaperone-mediated autophagy regulates proliferation by targeting RND3 in gastric cancer , 2016, Autophagy.

[46]  P. Verstreken,et al.  Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy , 2015, Neuron.

[47]  M. Bycroft,et al.  The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy , 2015, PLoS pathogens.

[48]  M. Dong,et al.  ESCRTs Cooperate with a Selective Autophagy Receptor to Mediate Vacuolar Targeting of Soluble Cargos. , 2015, Molecular cell.

[49]  Aurora Martínez,et al.  Dynamics, flexibility, and allostery in molecular chaperonins , 2015, FEBS letters.

[50]  Jiahuai Han,et al.  Chaperone-mediated autophagy prevents apoptosis by degrading BBC3/PUMA , 2015, Autophagy.

[51]  D. Walker,et al.  AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. , 2014, Cell reports.

[52]  A. Cuervo,et al.  Chaperone mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation , 2014, Nature Immunology.

[53]  Y. Suh,et al.  Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. , 2014, Cell metabolism.

[54]  P. Majumder,et al.  Metabolism and mis-metabolism of the neuropathological signature protein TDP-43 , 2014, Journal of Cell Science.

[55]  R. Puertollano mTOR and lysosome regulation , 2014, F1000prime reports.

[56]  D. Lombard,et al.  Sirtuins: guardians of mammalian healthspan. , 2014, Trends in genetics : TIG.

[57]  S. Finkbeiner,et al.  Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models , 2014, Nature chemical biology.

[58]  D. Sinclair,et al.  Small molecule SIRT1 activators for the treatment of aging and age-related diseases. , 2014, Trends in pharmacological sciences.

[59]  F. Taylor,et al.  Heat shock factor 1 confers resistance to Hsp90 inhibitors through p62/SQSTM1 expression and promotion of autophagic flux. , 2014, Biochemical pharmacology.

[60]  Matthew E. Welsch,et al.  Regulation of Ferroptotic Cancer Cell Death by GPX4 , 2014, Cell.

[61]  N. Mizushima,et al.  Autophagy and human diseases , 2013, Cell Research.

[62]  T. Mizushima,et al.  Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. , 2013, Molecular cell.

[63]  Erik D Herzog,et al.  Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. , 2013, Cell metabolism.

[64]  L. Sistonen,et al.  Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells , 2013, Proceedings of the National Academy of Sciences.

[65]  J. Pyo,et al.  Overexpression of Atg5 in mice activates autophagy and extends lifespan , 2013, Nature Communications.

[66]  T. Lamark,et al.  The LIR motif – crucial for selective autophagy , 2013, Journal of Cell Science.

[67]  E. Mercken,et al.  Metformin improves healthspan and lifespan in mice , 2013, Nature Communications.

[68]  P. Boya,et al.  Emerging regulation and functions of autophagy , 2013, Nature Cell Biology.

[69]  Paulo Pereira,et al.  STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy , 2013, Autophagy.

[70]  C. Chao,et al.  Attenuating heat-induced cellular autophagy, apoptosis and damage in H9c2 cardiomyocytes by pre-inducing HSP70 with heat shock preconditioning , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[71]  Q. Ye,et al.  The molecular mechanism and potential role of heat shock-induced p53 protein accumulation , 2013, Molecular and Cellular Biochemistry.

[72]  A. Consiglio,et al.  Interplay of LRRK2 with chaperone-mediated autophagy , 2013, Nature Neuroscience.

[73]  Jun Yao,et al.  Heat Shock Factor 1 (HSF1) Controls Chemoresistance and Autophagy through Transcriptional Regulation of Autophagy-related Protein 7 (ATG7)* , 2013, The Journal of Biological Chemistry.

[74]  J. Terzic,et al.  Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates , 2013, Journal of Cell Science.

[75]  Masaki Tanaka,et al.  p62/SQSTM1-Dependent Autophagy of Lewy Body-Like α-Synuclein Inclusions , 2012, PloS one.

[76]  K. Sakimura,et al.  Motor Neuron-specific Disruption of Proteasomes, but Not Autophagy, Replicates Amyotrophic Lateral Sclerosis* , 2012, The Journal of Biological Chemistry.

[77]  A. Cuervo,et al.  Chaperone-mediated autophagy: a unique way to enter the lysosome world. , 2012, Trends in cell biology.

[78]  T. Walther,et al.  The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis , 2012, Science Signaling.

[79]  M. R. Lamprecht,et al.  Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death , 2012, Cell.

[80]  J. Bao,et al.  Microautophagy: lesser-known self-eating , 2012, Cellular and Molecular Life Sciences.

[81]  A. Efeyan,et al.  Pten positively regulates brown adipose function, energy expenditure, and longevity. , 2012, Cell metabolism.

[82]  A. Cuervo,et al.  Chaperone-Mediated Autophagy Is Required for Tumor Growth , 2011, Science Translational Medicine.

[83]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[84]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[85]  N. Nukina,et al.  Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. , 2011, Molecular cell.

[86]  C. van Broeckhoven,et al.  Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. , 2011, American journal of human genetics.

[87]  Zhengyu Zha,et al.  Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. , 2011, Molecular cell.

[88]  Y. Eishi,et al.  Autophagy-deficient mice develop multiple liver tumors. , 2011, Genes & development.

[89]  D. Hardie AMPK and autophagy get connected , 2011, The EMBO journal.

[90]  M. S. Mohammed,et al.  Differential gene expression of HSC70/HSP70 in yellowtail cells in response to chaperone‐mediated autophagy , 2011, The FEBS journal.

[91]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[92]  L. Santambrogio,et al.  Microautophagy of cytosolic proteins by late endosomes. , 2011, Developmental cell.

[93]  C. Bendotti,et al.  The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). , 2010, Human molecular genetics.

[94]  F. Ross,et al.  Use of Cells Expressing γ Subunit Variants to Identify Diverse Mechanisms of AMPK Activation , 2010, Cell metabolism.

[95]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[96]  Congcong He,et al.  The Beclin 1 interactome. , 2010, Current opinion in cell biology.

[97]  William D Fraser,et al.  Genome wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone , 2010, Nature Genetics.

[98]  N. Nukina,et al.  Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein , 2010, Nature Biotechnology.

[99]  T. Lamark,et al.  The Adaptor Protein p62/SQSTM1 Targets Invading Bacteria to the Autophagy Pathway1 , 2009, The Journal of Immunology.

[100]  Frank Sinner,et al.  Induction of autophagy by spermidine promotes longevity , 2009, Nature Cell Biology.

[101]  S. Bloor,et al.  The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria , 2009, Nature Immunology.

[102]  J. Auwerx,et al.  Caloric restriction, SIRT1 and longevity , 2009, Trends in Endocrinology & Metabolism.

[103]  Stuart K. Calderwood,et al.  The Shock of Aging: Molecular Chaperones and the Heat Shock Response in Longevity and Aging – A Mini-Review , 2009, Gerontology.

[104]  M. Komatsu,et al.  A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. , 2009, Molecular cell.

[105]  Richard I. Morimoto,et al.  Stress-Inducible Regulation of Heat Shock Factor 1 by the Deacetylase SIRT1 , 2009, Science.

[106]  F. Hartl,et al.  Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3 , 2009, The EMBO journal.

[107]  Yuanbo Zhao,et al.  Induction of macroautophagy by heat , 2009, Molecular Biology Reports.

[108]  James Lowe,et al.  Depletion of 26S Proteasomes in Mouse Brain Neurons Causes Neurodegeneration and Lewy-Like Inclusions Resembling Human Pale Bodies , 2008, The Journal of Neuroscience.

[109]  M. Turco,et al.  bag3 gene expression is regulated by heat shock factor 1 , 2008, Journal of cellular physiology.

[110]  Nicholas E. Bruns,et al.  A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy , 2008, Proceedings of the National Academy of Sciences.

[111]  A. Brech,et al.  Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila , 2008, Autophagy.

[112]  Peter T Lansbury,et al.  Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. , 2008, The Journal of clinical investigation.

[113]  J. Landry,et al.  HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy , 2008, Autophagy.

[114]  J. Landry,et al.  HspB8 Chaperone Activity toward Poly(Q)-containing Proteins Depends on Its Association with Bag3, a Stimulator of Macroautophagy* , 2008, Journal of Biological Chemistry.

[115]  S. Lindquist,et al.  Heat Shock Factor 1 Is a Powerful Multifaceted Modifier of Carcinogenesis , 2007, Cell.

[116]  L. Guarente,et al.  Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. , 2006, Genes & development.

[117]  J. Lippincott-Schwartz,et al.  Unifying Nomenclature for the Isoforms of the Lysosomal Membrane Protein LAMP‐2 , 2005, Traffic.

[118]  A. Cuervo,et al.  Activation of chaperone-mediated autophagy during oxidative stress. , 2004, Molecular biology of the cell.

[119]  Peter T. Lansbury,et al.  Impaired Degradation of Mutant α-Synuclein by Chaperone-Mediated Autophagy , 2004, Science.

[120]  Myriam Gorospe,et al.  Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacetylase , 2004, Science.

[121]  R. Nussbaum,et al.  Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1 , 2004, Science.

[122]  N. Mizushima,et al.  Two ubiquitin-like conjugation systems essential for autophagy. , 2004, Seminars in cell & developmental biology.

[123]  Cynthia Kenyon,et al.  Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor , 2003, Science.

[124]  L. Guarente,et al.  How does calorie restriction work? , 2003, Genes & development.

[125]  Jacques P. Brown,et al.  Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. , 2002, American journal of human genetics.

[126]  Rainer Duden,et al.  Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. , 2002, Human molecular genetics.

[127]  D. Klionsky,et al.  Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. , 2001, Molecular biology of the cell.

[128]  G. Gademann,et al.  Geldanamycin: the prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones , 2001, Cell stress & chaperones.

[129]  L. Guarente,et al.  Genetic pathways that regulate ageing in model organisms , 2000, Nature.

[130]  M. Rose,et al.  Increased hsp22 RNA levels in Drosophila lines genetically selected for increased longevity. , 2000, The journals of gerontology. Series A, Biological sciences and medical sciences.

[131]  A. Mayer,et al.  Cell-Free Reconstitution of Microautophagic Vacuole Invagination and Vesicle Formation , 2000, The Journal of cell biology.

[132]  A. Cuervo,et al.  Age-related Decline in Chaperone-mediated Autophagy* , 2000, The Journal of Biological Chemistry.

[133]  R. Morimoto,et al.  Role of the heat shock response and molecular chaperones in oncogenesis and cell death. , 2000, Journal of the National Cancer Institute.

[134]  S. Dimauro,et al.  Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease) , 2000, Nature.

[135]  R. Lüllmann-Rauch,et al.  Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice , 2000, Nature.

[136]  C. Holmberg,et al.  Formation of nuclear HSF1 granules varies depending on stress stimuli , 2000, Cell stress & chaperones.

[137]  W. Bursch,et al.  Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. , 2000, Journal of cell science.

[138]  H. Hibshoosh,et al.  Induction of autophagy and inhibition of tumorigenesis by beclin 1 , 1999, Nature.

[139]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[140]  Takeshi Noda,et al.  Tor, a Phosphatidylinositol Kinase Homologue, Controls Autophagy in Yeast* , 1998, The Journal of Biological Chemistry.

[141]  Marc Tatar,et al.  Chaperoning extended life , 1997, Nature.

[142]  Jasper Rine,et al.  Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[143]  B. Kennedy,et al.  Mutation in the silencing gene S/R4 can delay aging in S. cerevisiae , 1995, Cell.

[144]  A. Cuervo,et al.  Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. , 1994, The Journal of biological chemistry.

[145]  C. Schworer,et al.  Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[146]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.