Quantum key distribution technologies

Since it was noted that quantum computers could break public key cryptosystems based on number theory, extensive studies have been undertaken on quantum cryptography (QC), which offers unconditionally secure communication based on quantum mechanics. This paper describes QC technologies, introduces a typical and widely used QC protocol BB84 and then describes a recently proposed scheme called the differential-phase-shift protocol

[1]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[2]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[3]  Nicolas Gisin,et al.  Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. , 2004, Physical review letters.

[4]  M. Fejer,et al.  Differential phase shift quantum key distribution experiment over 105 km fibre , 2005, quant-ph/0507110.

[5]  R. Namiki,et al.  Quantum cryptography using pulsed homodyne detection , 2000, quant-ph/0008037.

[6]  J. Goedgebuer,et al.  Long-distance QKD transmission using single-sideband detection scheme With WDM synchronization , 2003 .

[7]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[8]  Edo Waks,et al.  Security of quantum key distribution with entangled photons against individual attacks , 2000, quant-ph/0012078.

[9]  N. Gisin,et al.  Long distance quantum teleportation in quantum relay configuration , 2003, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[10]  Nicolas Gisin,et al.  Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks , 2004 .

[11]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[12]  N. Gisin,et al.  Quantum relays for long distance quantum cryptography , 2003, quant-ph/0311101.

[13]  Kyo Inoue,et al.  Plug & Play Quantum Key Distribution Using Modulation Sidebands for Shifting Frequency , 2005 .

[14]  Kyo Inoue,et al.  Quantum Cryptography with a Photon Turnstile Device , 2002 .

[15]  N. Gisin,et al.  Quantum key distribution over 67 km with a plug , 2002 .

[16]  J. D. Franson,et al.  Quantum relays and noise suppression using linear optics , 2002 .

[17]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.

[18]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[19]  T. Honjo,et al.  Differential-phase-shift QKD with an extended degree of measurement , 2005, International Quantum Electronics Conference, 2005..

[20]  Kyo Inoue,et al.  Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack , 2005 .

[21]  Kyo Inoue Quantum key distribution using a series of quantum correlated photon pairs , 2005 .

[22]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[23]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[24]  Yoshihisa Yamamoto,et al.  Differential-phase-shift quantum key distribution using coherent light , 2003 .

[25]  T. Miya,et al.  Silica-based planar lightwave circuits , 1998 .

[26]  Liu Song-hao Plug and Play Systems for Quantum Cryptography , 2004 .

[27]  Yoshihisa Yamamoto,et al.  Differential phase shift quantum key distribution. , 2002 .

[28]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[29]  Akio Yoshizawa,et al.  10.5 km Fiber-Optic Quantum Key Distribution at 1550 nm with a Key Rate of 45 kHz , 2004 .

[30]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[31]  Hiroki Takesue,et al.  Differential-phase-shift quantum key distribution , 2009, 2006 Digest of the LEOS Summer Topical Meetings.

[32]  Akihisa Tomita,et al.  Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm. , 2002, Optics letters.

[33]  Marius A Albota,et al.  Efficient single-photon counting at 1.55 microm by means of frequency upconversion. , 2004, Optics letters.

[34]  T. Honjo,et al.  Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. , 2004, Optics letters.

[35]  Ryo Namiki,et al.  Practical limitation for continuous-variable quantum cryptography using coherent States. , 2004, Physical review letters.

[36]  A. Tomita,et al.  Single-photon interference experiment over 100 km for quantum cryptography system using balanced gated-mode photon detector , 2003, quant-ph/0306066.

[37]  Z. Yuan,et al.  Unconditionally secure quantum key distribution over 50 km of standard telecom fibre , 2004, quant-ph/0412173.