19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact

We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%.

[1]  C. Battaglia,et al.  Silicon heterojunction solar cell with passivated hole selective MoOx contact , 2014 .

[2]  J. Sturm,et al.  Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics , 2013 .

[3]  Xiong Gong,et al.  Efficient, Air‐Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer , 2011, Advanced materials.

[4]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[5]  C. Battaglia,et al.  Hole selective MoOx contact for silicon solar cells. , 2014, Nano letters.

[6]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[7]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[8]  S. Pearton,et al.  Hydrogen passivation of acceptors in p‐InP , 1989 .

[9]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[10]  P. Würfel Physics of solar cells : from principles to new concepts , 2005 .

[11]  J. Lee,et al.  Passivation of acceptors in InP resulting from CH4/H2 reactive ion etching , 1989 .

[12]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[13]  Jianhui Hou,et al.  Low‐Temperature Solution‐Processed Hydrogen Molybdenum and Vanadium Bronzes for an Efficient Hole‐Transport Layer in Organic Electronics , 2013, Advanced materials.

[14]  S. Wagner,et al.  p−InP/n−CdS solar cells and photovoltaic detectors , 1975 .

[15]  Nancy M. Haegel,et al.  Enhanced Near‐Bandgap Response in InP Nanopillar Solar Cells , 2014 .

[16]  Luping Yu,et al.  Metal Oxide Nanoparticles as an Electron‐Transport Layer in High‐Performance and Stable Inverted Polymer Solar Cells , 2012, Advanced materials.

[17]  Chih‐Ping Chen,et al.  High‐Performance and Highly Durable Inverted Organic Photovoltaics Embedding Solution‐Processable Vanadium Oxides as an Interfacial Hole‐Transporting Layer , 2011, Advanced materials.

[18]  J. Loferski,et al.  Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion , 1956 .

[19]  Yongfang Li,et al.  Solution-Processed Tungsten Oxide as an Effective Anode Buffer Layer for High-Performance Polymer Solar Cells , 2012 .

[20]  Joel W. Ager,et al.  A direct thin-film path towards low-cost large-area III-V photovoltaics , 2013, Scientific Reports.

[21]  Paul A. Basore,et al.  Numerical modeling of textured silicon solar cells using PC-1D , 1990 .

[22]  J. Aarik,et al.  Morphology and structure of TiO2 thin films grown by atomic layer deposition , 1995 .

[23]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[24]  C. J. Keavney,et al.  Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[25]  W. Warta,et al.  Solar cell efficiency tables (version 43) , 2014 .

[26]  Xindong Zhang,et al.  Role of tungsten oxide in inverted polymer solar cells , 2009 .

[27]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[28]  U. Bach,et al.  The function of a TiO2 compact layer in dye-sensitized solar cells incorporating "planar" organic dyes. , 2008, Nano letters.

[29]  C. Battaglia,et al.  Fermi level stabilization and band edge energies in CdxZn1−xO alloys , 2014 .

[30]  Robert P. H. Chang,et al.  p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells , 2008, Proceedings of the National Academy of Sciences.

[31]  Y. Hashimoto,et al.  Efficient ZnO/CdS/InP heterojunction solar cell , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[32]  Z. Kafafi,et al.  Work function measurements on indium tin oxide films , 2001 .

[33]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[34]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[35]  Keith Emery,et al.  High efficiency indium tin oxide/indium phosphide solar cells , 1985 .

[36]  Craig A Grimes,et al.  Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. , 2009, Nano letters.