On a Model of Multiphase Flow

We consider a hyperbolic system of three conservation laws in one space variable. The system is a model for fluid flow allowing phase transitions; in this case the state variables are the specific volume, the velocity, and the mass density fraction of the vapor in the fluid. For a class of initial data having large total variation we prove the global existence of solutions to the Cauchy problem.

[1]  Takaaki Nishida,et al.  Global solution for an initial boundary value problem of a quasilinear hyperbolic system , 1968 .

[2]  Fumioki Asakura,et al.  Wave-front tracking for the equations of non-isentropic gas dynamics , 2004, Annali di Matematica Pura ed Applicata (1923 -).

[3]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[4]  HAITAO FAN,et al.  On a Model of the Dynamics of Liquid/Vapor Phase Transitions , 2000, SIAM J. Appl. Math..

[5]  G. Guerra,et al.  Global BV solutions and relaxation limit for a system of conservation laws , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  A. Corli,et al.  Stratified solutions for systems of conservation laws , 2001 .

[7]  J. K. Knowles,et al.  Kinetic relations and the propagation of phase boundaries in solids , 1991 .

[8]  F. Poupaud,et al.  Global Solutions to the Isothermal Euler-Poisson System with Arbitrarily Large Data , 1995 .

[9]  J.Blake Temple,et al.  Solutions in the Large for the Nonlinear Hyperbolic Conservation Laws of Gas Dynamics , 1980 .

[10]  Takaaki Nishida,et al.  Solutions in the large for some nonlinear hyperbolic conservation laws , 1973 .

[11]  Andrea Corli,et al.  Wave-front tracking for the equations of non-isentropic gas dynamics , 2006 .

[12]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[13]  Andrea Corli,et al.  The Riemann Problem for Reversible Reactive Flows with Metastability , 2004, SIAM J. Appl. Math..

[14]  L. Hörmander,et al.  Lectures on Nonlinear Hyperbolic Differential Equations , 1997 .

[15]  D. Serre,et al.  Solutions Faibles Globales Pour L'Equations D'Euler D'un Fluide Compressible Avec De Grandes Donnees Initiles , 1992 .

[16]  R. J. Diperna Existence in the large for quasilinear hyperbolic conservation laws , 1973 .

[17]  S. Bianchini The semigroup generated by a Temple class system with non-convex flux function , 2000, Differential and Integral Equations.

[18]  浅倉 史興,et al.  書評 C.Dafermos: Hyperbolic Conservation Laws in Continuum Physics , 2003 .

[19]  David H. Wagner,et al.  Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions , 1987 .

[20]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[21]  Yunguang Lu,et al.  Hyperbolic Conservation Laws and the Compensated Compactness Method , 2002 .

[22]  Tai-Ping Liu Initial-boundary value problems for gas dynamics , 1977 .

[23]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[24]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .

[25]  Sylvie Benzoni-Gavage Analyse numérique des modèles hydrodynamiques d'écoulements diphasiques instationnaires dans les réseaux de production pétrolière , 1991 .

[27]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .