The bivariate non-central negative binomial distributions

SummaryFour bivariate generalisations (Type I–IV) of the non-central negative binomial distribution (Ong/Lee) are considered. The Type I generalisation is constructed using the “latent structure model” scheme (Goodman) while the Type II generalisation arises from a variation of this scheme. The Type III generalisation is formed by using the method of random elements in common (Mardia). The Type IV is an extension of the Type I generalisation. Properties of these bivariate distributions including joint central and factorial moments are discussed; several recurrence formulae of the probabilities are given. An application to the childhood accident data of Mellinger et al. is considered with the precision of the Type I maximum likelihood estimates computed.

[1]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[2]  Sherman Karp,et al.  Optical Communications , 1976 .

[3]  W. J. McGill Neural counting mechanisms and energy detection in audition , 1967 .

[4]  C D Kemp,et al.  Some properties of the 'hermite' distribution. , 1965, Biometrika.

[5]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[6]  W. J. McGill,et al.  Neural Counting and Photon Counting in the Presence of Dead Time , 1976 .

[7]  P Holgate,et al.  Bivariate generalizations of Neyman's type A distribution. , 1966, Biometrika.

[8]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[9]  A. C. Aitken,et al.  XI.—On Fourfold Sampling with and without Replacement , 1936 .

[10]  P. Holgate Estimation for the bivariate Poisson distribution , 1964 .

[11]  C. Charalambides,et al.  On bivariate generalized binomial and negative binomial distributions , 1981 .

[12]  P. A. Lee Canonical Expansion of a Mixed Bivariate Distribution with Negative Binomial and Gamma Marginals , 1979 .

[13]  W. Gaffey,et al.  A Mathematical Model with Applications to a Study of Accident Repeatedness among Children , 1965 .

[14]  Kanti V. Mardia,et al.  Families of Bivariate Distributions , 1970 .

[15]  Seng-Huat Ong,et al.  The non-central negative binomial distribution , 1979 .

[16]  D. Lampard A stochastic process whose successive intervals between events form a first order Markov chain — I , 1968, Journal of Applied Probability.

[17]  G. C. Jain,et al.  Three generalised negative Binomial Distributions , 1975 .

[18]  J. Meixner Erzeugende Funktionen der Charlierschen Polynome , 1939 .