Large deformation and fracture mechanics of a beta-helical protein nanotube: Atomistic and continuum modeling

[1]  Markus J. Buehler,et al.  Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains , 2007, Proceedings of the National Academy of Sciences.

[2]  Markus J. Buehler,et al.  Fracture mechanics of protein materials , 2007 .

[3]  Markus J. Buehler,et al.  Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies , 2007, Journal of Materials Science.

[4]  B. Colombini,et al.  Characterization of actomyosin bond properties in intact skeletal muscle by force spectroscopy , 2007, Proceedings of the National Academy of Sciences.

[5]  K. Schulten,et al.  Single-Molecule Experiments in Vitro and in Silico , 2007, Science.

[6]  L. Serpell,et al.  Spider silk and amyloid fibrils: a structural comparison. , 2007, Macromolecular bioscience.

[7]  Markus J. Buehler,et al.  Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding, and fracture , 2006 .

[8]  S. Jarvis,et al.  Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive , 2006, Journal of biological physics.

[9]  Markus J. Buehler,et al.  Large-Scale Hierarchical Molecular Modeling of Nanostructured Biological Materials , 2006 .

[10]  Markus J. Buehler,et al.  Nature designs tough collagen: Explaining the nanostructure of collagen fibrils , 2006, Proceedings of the National Academy of Sciences.

[11]  Markus J. Buehler,et al.  Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly , 2006 .

[12]  S. Jarvis,et al.  Explanation for the mechanical strength of amyloid fibrils , 2006 .

[13]  C. Dobson,et al.  Protein misfolding, functional amyloid, and human disease. , 2006, Annual review of biochemistry.

[14]  Klaus Schulten,et al.  Mechanical strength of the titin Z1Z2-telethonin complex. , 2006, Structure.

[15]  Huajian Gao,et al.  Dynamical fracture instabilities due to local hyperelasticity at crack tips , 2006, Nature.

[16]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[17]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[18]  H. Lashuel,et al.  The Materials Science of Protein Aggregation , 2005 .

[19]  A. Nagy,et al.  Reversible Mechanical Unzipping of Amyloid β-Fibrils* , 2005, Journal of Biological Chemistry.

[20]  Hualiang Jiang,et al.  Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations. , 2005, Biophysical journal.

[21]  D. Makarov,et al.  Simulation of the mechanical unfolding of ubiquitin: probing different unfolding reaction coordinates by changing the pulling geometry. , 2004, The Journal of chemical physics.

[22]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[23]  Huajian Gao,et al.  Deformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading , 2004 .

[24]  Fred E. Cohen,et al.  Evidence for assembly of prions with left-handed β-helices into trimers , 2004 .

[25]  A. Kishimoto,et al.  beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. , 2004, Biochemical and biophysical research communications.

[26]  Klaus Schulten,et al.  Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[29]  Emanuele Paci,et al.  Pulling geometry defines the mechanical resistance of a β-sheet protein , 2003, Nature Structural Biology.

[30]  Meital Reches,et al.  Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes , 2003, Science.

[31]  H. Jaeger,et al.  Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. M. Parker,et al.  Section: Extracellular matrix proteins; Mechanics of elastin: molecular mechanism of biological elasticity and its relationship to contraction , 2002, Journal of Muscle Research & Cell Motility.

[33]  F. Vollrath,et al.  Amyloidogenic nature of spider silk. , 2002, European journal of biochemistry.

[34]  Kai-Nan An,et al.  Direct quantification of the flexibility of type I collagen monomer. , 2002, Biochemical and biophysical research communications.

[35]  H. Hansma,et al.  Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J T Finch,et al.  Amyloid fibers are water-filled nanotubes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Fumio Arisaka,et al.  Structure of the cell-puncturing device of bacteriophage T4 , 2002, Nature.

[38]  D. Boal,et al.  Mechanics of the cell , 2001 .

[39]  K. Schulten,et al.  Steered molecular dynamics and mechanical functions of proteins. , 2001, Current opinion in structural biology.

[40]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[41]  K. Schulten,et al.  The key event in force-induced unfolding of Titin's immunoglobulin domains. , 2000, Biophysical journal.

[42]  R. Kisilevsky Review: amyloidogenesis-unquestioned answers and unanswered questions. , 2000, Journal of structural biology.

[43]  H. Hansma,et al.  Probing biopolymers with the atomic force microscope: A review , 2000, Journal of biomaterials science. Polymer edition.

[44]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[45]  K. Schulten,et al.  Steered molecular dynamics simulations of force‐induced protein domain unfolding , 1999, Proteins.

[46]  R. Lavery,et al.  Unraveling proteins: a molecular mechanics study. , 1999, Biophysical journal.

[47]  Andres F. Oberhauser,et al.  The molecular elasticity of the extracellular matrix protein tenascin , 1998, Nature.

[48]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[49]  R. Lewis,et al.  Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. , 1998, Journal of molecular biology.

[50]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[51]  Laxmikant V. Kalé,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[52]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[53]  M. Yoder,et al.  Unusual structural features in the parallel β-helix in pectate lyases , 1993 .

[54]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[55]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[56]  S. Radford,et al.  Mechanical resistance of proteins explained using simple molecular models. , 2006, Biophysical journal.

[57]  Peter S. Lomdahl,et al.  LARGE-SCALE MOLECULAR-DYNAMICS SIMULATION OF 19 BILLION PARTICLES , 2004 .

[58]  T. M. Parker,et al.  Mechanics of elastin: molecular mechanism of biological elasticity and its relationship to contraction , 2003 .

[59]  S. Timoshenko Theory of Elastic Stability , 1936 .