Explainable User Clustering in Short Text Streams
暂无分享,去创建一个
M. de Rijke | Maarten de Rijke | Emine Yilmaz | Zhaochun Ren | Jun Ma | Shangsong Liang | Yukun Zhao | Emine Yilmaz | Z. Ren | Shangsong Liang | Jun Ma | Yukun Zhao
[1] Yan Zhang,et al. User Based Aggregation for Biterm Topic Model , 2015, ACL.
[2] John D. Lafferty,et al. Dynamic topic models , 2006, ICML.
[3] M. de Rijke,et al. Summarizing Contrastive Themes via Hierarchical Non-Parametric Processes , 2015, SIGIR.
[4] M. de Rijke,et al. Personalized time-aware tweets summarization , 2013, SIGIR.
[5] M. de Rijke,et al. Fusion helps diversification , 2014, SIGIR.
[6] Sebastian Thrun,et al. Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.
[7] Christopher D. Manning,et al. Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..
[8] M. de Rijke,et al. Hierarchical multi-label classification of social text streams , 2014, SIGIR.
[9] Jie Yin,et al. Clustering Microtext Streams for Event Identification , 2013, IJCNLP.
[10] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[11] M. de Rijke,et al. Burst-aware data fusion for microblog search , 2015, Inf. Process. Manag..
[12] Ryen W. White,et al. Large-scale analysis of individual and task differences in search result page examination strategies , 2012, WSDM '12.
[13] Jaideep Srivastava,et al. Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.
[14] Charles Elkan,et al. Clustering documents with an exponential-family approximation of the Dirichlet compound multinomial distribution , 2006, ICML.
[15] Marcel Worring,et al. Unsupervised, Efficient and Semantic Expertise Retrieval , 2016, WWW.
[16] Qiang Yang,et al. Transferring topical knowledge from auxiliary long texts for short text clustering , 2011, CIKM '11.
[17] Bing Liu,et al. Mining topics in documents: standing on the shoulders of big data , 2014, KDD.
[18] Jun Zhang,et al. Dirichlet Process Mixture Model for Document Clustering with Feature Partition , 2013, IEEE Transactions on Knowledge and Data Engineering.
[19] M. Cugmas,et al. On comparing partitions , 2015 .
[20] Ari Rappoport,et al. Efficient Clustering of Short Messages into General Domains , 2013, ICWSM.
[21] Jaideep Srivastava,et al. Creating adaptive Web sites through usage-based clustering of URLs , 1999, Proceedings 1999 Workshop on Knowledge and Data Engineering Exchange (KDEX'99) (Cat. No.PR00453).
[22] Katja Hofmann,et al. Contextual factors for finding similar experts , 2010 .
[23] Jimeng Sun,et al. Dynamic Mixture Models for Multiple Time-Series , 2007, IJCAI.
[24] Jianyong Wang,et al. A dirichlet multinomial mixture model-based approach for short text clustering , 2014, KDD.
[25] Thomas Hofmann,et al. Probabilistic Latent Semantic Indexing , 1999, SIGIR Forum.
[26] Thomas L. Griffiths,et al. The Author-Topic Model for Authors and Documents , 2004, UAI.
[27] Guan Yu,et al. Document clustering via dirichlet process mixture model with feature selection , 2010, KDD.
[28] M. de Rijke,et al. Personalized search result diversification via structured learning , 2014, KDD.
[29] Delbert Dueck,et al. Clustering by Passing Messages Between Data Points , 2007, Science.
[30] M. de Rijke,et al. Time-Aware Rank Aggregation for Microblog Search , 2014, CIKM.
[31] Susumu Horiguchi,et al. Learning to classify short and sparse text & web with hidden topics from large-scale data collections , 2008, WWW.
[32] Andrew McCallum,et al. Topics over time: a non-Markov continuous-time model of topical trends , 2006, KDD '06.
[33] Ashish V. Tendulkar,et al. Comparative study of clustering techniques for short text documents , 2011, WWW.
[34] Lijun Zhu,et al. A Dynamic Users’ Interest Discovery Model with Distributed Inference Algorithm , 2014, Int. J. Distributed Sens. Networks.
[35] Naonori Ueda,et al. Topic Tracking Model for Analyzing Consumer Purchase Behavior , 2009, IJCAI.
[36] M. de Rijke,et al. Finding similar experts , 2007, SIGIR.
[37] Anil K. Jain. Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..
[38] Ke Wang,et al. Classification Pruning for Web-request Prediction , 2001, WWW Posters.
[39] Xiaohui Yan,et al. A biterm topic model for short texts , 2013, WWW.
[40] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.