Nonlinear-optical quantum control of free-electron matter waves

[1]  F. J. García de abajo,et al.  Optical-cavity mode squeezing by free electrons , 2022, Nanophotonics.

[2]  U. Nowak,et al.  Polarized phonons carry angular momentum in ultrafast demagnetization , 2021, Nature.

[3]  M. Segev,et al.  Imprinting the quantum statistics of photons on free electrons , 2021, 2021 Conference on Lasers and Electro-Optics (CLEO).

[4]  F. J. García de abajo,et al.  Optical Excitations with Electron Beams: Challenges and Opportunities , 2021, ACS photonics.

[5]  O. Leupold,et al.  Coherent control of collective nuclear quantum states via transient magnons , 2021, Science Advances.

[6]  I. Kaminer,et al.  Shaping quantum photonic states using free electrons , 2020, Science Advances.

[7]  A. Arie,et al.  The coherence of light is fundamentally tied to the quantum coherence of the emitting particle , 2020, Science Advances.

[8]  K. J. Mohler,et al.  Ultrafast electron diffraction from nanophotonic waveforms via dynamical Aharonov-Bohm phases , 2020, Science Advances.

[9]  P. Baum,et al.  Attosecond metrology in a continuous-beam transmission electron microscope , 2020, Science Advances.

[10]  C. Ropers,et al.  Optical coherence transfer mediated by free electrons , 2020, Science Advances.

[11]  F. Trinter,et al.  Zeptosecond birth time delay in molecular photoionization , 2020, Science.

[12]  F. D. de Abajo,et al.  Electron diffraction by vacuum fluctuations , 2020, New Journal of Physics.

[13]  I. Kaminer,et al.  Observation of the Stimulated Quantum Cherenkov Effect , 2019, 2020 Conference on Lasers and Electro-Optics (CLEO).

[14]  Robert M Glaeser,et al.  Laser phase plate for transmission electron microscopy , 2019, Nature Methods.

[15]  I. Kaminer,et al.  Free Electron Qubits , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[16]  P. Schattschneider,et al.  Entanglement and decoherence in electron microscopy. , 2018, Ultramicroscopy.

[17]  H. Batelaan,et al.  Experimental test of decoherence theory using electron matter waves , 2017, New Journal of Physics.

[18]  Y. Morimoto,et al.  Diffraction and microscopy with attosecond electron pulse trains , 2017 .

[19]  Yi Hua,et al.  Segmented Terahertz Electron Accelerator and Manipulator (STEAM) , 2017, Nature Photonics.

[20]  M. Kozák,et al.  Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum , 2017, Nature Physics.

[21]  F. Krausz,et al.  Capturing atomic-scale carrier dynamics with electrons , 2017 .

[22]  Jonathan Leach,et al.  Attosecond-resolution Hong-Ou-Mandel interferometry , 2017, Science Advances.

[23]  T. Hohage,et al.  Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy , 2017, 1706.03680.

[24]  Yiming Pan,et al.  Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket , 2017, Physics Letters A.

[25]  C. Ropers,et al.  Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam. , 2016, Ultramicroscopy.

[26]  R. Kienberger,et al.  Attosecond correlation dynamics , 2016, Nature Physics.

[27]  F. Krausz,et al.  All-optical control and metrology of electron pulses , 2016, Science.

[28]  P. Baum,et al.  Signal-to-noise in femtosecond electron diffraction. , 2015, Ultramicroscopy.

[29]  Claus Ropers,et al.  Quantum coherent optical phase modulation in an ultrafast transmission electron microscope , 2015, Nature.

[30]  L. Kasmi,et al.  Femtosecond single-electron pulses generated by two-photon photoemission close to the work function , 2015 .

[31]  R. Ernstorfer,et al.  Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit , 2014, 1412.1942.

[32]  R. Miller,et al.  Femtosecond Crystallography with Ultrabright Electrons and X-rays: Capturing Chemistry in Action , 2014, Science.

[33]  F. Krausz,et al.  Laser streaking of free electrons at 25 keV , 2013, Nature Photonics.

[34]  P. Baum On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction , 2013 .

[35]  R. Bach,et al.  Transverse quantum Stern–Gerlach magnets for electrons , 2011 .

[36]  F. Krausz,et al.  Single-electron pulses for ultrafast diffraction , 2010, Proceedings of the National Academy of Sciences.

[37]  Ahmed H. Zewail,et al.  Temporal lenses for attosecond and femtosecond electron pulses , 2009, Proceedings of the National Academy of Sciences.

[38]  Peter Baum,et al.  Attosecond electron pulses for 4D diffraction and microscopy , 2007, Proceedings of the National Academy of Sciences.

[39]  U. Heinzmann,et al.  Attosecond metrology , 2007, Nature.

[40]  H. Batelaan,et al.  Observation of the Kapitza–Dirac effect , 2001, Nature.

[41]  Ahmet S. Cakmak,et al.  Explicit integration method for the time‐dependent Schrodinger equation for collision problems , 1978 .

[42]  H. Avetissian,et al.  An analogue of the Kapitza--Dirac effect , 1975 .