Effect of initial voltage ramp on separation efficiency in non-aqueous capillary electrophoresis with ethanol as background electrolyte solvent.

[1]  Dongqing Li,et al.  Thermal end effects on electroosmotic flow in a capillary , 2004 .

[2]  Matti Jussila,et al.  Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: Propanol as background electrolyte solvent , 2003, Electrophoresis.

[3]  S. P. Porras,et al.  Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis , 2003, Electrophoresis.

[4]  M. Riekkola,et al.  Nonaqueous capillary electrophoresis with alcoholic background electrolytes: Separation efficiency under high electrical field strengths , 2002, Electrophoresis.

[5]  S. Bean,et al.  Optimizing Quantitative Reproducibility in High-Performance Capillary Electrophoresis (HPCE) Separations of Cereal Proteins1 , 2001 .

[6]  M. Riekkola,et al.  Extremely high electric field strengths in non-aqueous capillary electrophoresis. , 2001, Journal of chromatography. A.

[7]  J. Sowell,et al.  Capillary electrophoresis-based immunoassay for insulin antibodies with near-infrared laser induced fluorescence detection. , 2001, Journal of chromatography. B, Biomedical sciences and applications.

[8]  T. Kenny,et al.  Electroosmotic capillary flow with nonuniform zeta potential , 2000, Analytical Chemistry.

[9]  B. A. Williams,et al.  Effect of the initial potential ramp on the accuracy of electrophoretic mobilities in capillary electrophoresis , 1995 .

[10]  B. Gaš,et al.  Electroosmosis in capillary zone electrophoresis with non-uniform zeta potential , 1995 .

[11]  Tom van de Goor,et al.  Modeling Flow Profiles and Dispersion in Capillary Electrophoresis with Nonuniform .zeta. Potential , 1994 .

[12]  M. Morris,et al.  Raman spectroscopic measurement of spatial and temporal temperature gradients in operating electrophoresis capillaries. , 1994, Analytical chemistry.

[13]  J. Knox,et al.  Volume expansion and loss of sample due to initial self-heating in capillary electroseparation (CES) systems , 1994 .

[14]  J. Knox,et al.  Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance , 1994 .

[15]  J. Knox,et al.  Temperature effects in capillary electrophoresis 2: Some theoretical calculations and predictions , 1994 .

[16]  G. Guiochon,et al.  Timescales of transient processes in capillary electrophoresis , 1993 .

[17]  František Foret,et al.  Capillary Zone Electrophoresis , 1993 .

[18]  B. Gaš Axial temperature effects in electromigration , 1993 .

[19]  F. Regnier,et al.  Impact of polycation adsorption on efficiency and electroosmotically driven transport in capillary electrophoresis , 1992 .

[20]  P. Righetti,et al.  Unsteady heat transfer in capillary zone electrophoresis: II. Computer simulations , 1992 .

[21]  J. Calvin Giddings,et al.  Unified Separation Science , 1991 .

[22]  Eli Grushka,et al.  Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations , 1989 .

[23]  J. Knox Thermal effects and band spreading in capillary electro-separation , 1988 .

[24]  P. Kortbeek,et al.  Acoustic and Thermodynamic Properties of Ethanol from 273.15 to 333.1 5 K and up to 280 MPa , 1988 .

[25]  J. Knox,et al.  Miniaturisation in pressure and electroendosmotically driven liquid chromatography: Some theoretical considerations , 1987 .

[26]  S. Hjertén,et al.  Free zone electrophoresis. , 1967, Chromatographic reviews.

[27]  Xiangchun Xuan,et al.  Band‐broadening in capillary zone electrophoresis with axial temperature gradients , 2005, Electrophoresis.

[28]  Y. Marcus The properties of solvents , 1998 .

[29]  Richard D. Smith,et al.  Variance contributions to band spread in capillary zone electrophoresis , 1990 .

[30]  R. Snyder,et al.  Dispersion effects in capillary zone electrophoresis , 1989 .