Log‐algebraic identities on Drinfeld modules and special L ‐values

We formulate and prove a log-algebraicity theorem for arbitrary rank Drinfeld modules defined over the polynomial ring F_q[theta]. This generalizes results of Anderson for the rank one case. As an application we show that certain special values of Goss L-functions are linear forms in Drinfeld logarithms and are transcendental.

[1]  Jing Yu ANALYTIC HOMOMORPHISMS INTO DRINFELD MODULES , 1997 .

[2]  F. Pellarin,et al.  Anderson-Stark units for $\mathbb F_q[\theta]$ , 2015, 1501.06804.

[3]  F. Tavares Ribeiro,et al.  Stark units in positive characteristic , 2016, 1606.05502.

[4]  M. Papanikolas,et al.  Identities for Anderson generating functions for Drinfeld modules , 2013, 1302.0238.

[5]  On finite Drinfeld modules , 1991 .

[6]  D. Thakur Drinfeld modules and arithmetic in the function fields , 1992 .

[7]  E. Gekeler Zur Arithmetik von Drinfeld-Moduln , 1983 .

[8]  Jing Yu Transcendence and Drinfeld modules , 1986 .

[9]  Chieh-Yu Chang,et al.  Algebraic independence of periods and logarithms of Drinfeld modules (with an appendix by Brian Conrad) , 2010, 1005.5120.

[10]  G. Anderson Log-Algebraicity of TwistedA-Harmonic Series and Special Values ofL-Series in Characteristicp , 1996 .

[11]  David Goss,et al.  Basic Structures of Function Field Arithmetic , 1997 .

[12]  Chieh-Yu Chang,et al.  Algebraic relations among periods and logarithms of rank 2 Drinfeld modules , 2008, 0807.3157.

[13]  Dinesh S. Thakur,et al.  Function Field Arithmetic , 2004 .

[14]  Jian-Ping Fang Equivariant special L-values of abelian t-modules , 2015, Journal of Number Theory.

[15]  D. Goss L -series of t -motives and Drinfeld Modules , 1992 .

[16]  Nathan Green,et al.  Special L-values and shtuka functions for Drinfeld modules on elliptic curves , 2016, 1607.04211.

[17]  F. Tavares Ribeiro,et al.  Arithmetic of positive characteristic $L$-series values in Tate algebras , 2014, Compositio Mathematica.

[18]  F. Tavares Ribeiro,et al.  Arithmetic of function field units , 2015, 1506.06286.

[19]  On symmetric powers of τ-recurrent sequences and deformations of Eisenstein series , 2013, 1305.2573.

[20]  G. Anderson Rank one elliptic $A$-modules and $A$-harmonic series , 1994 .

[21]  M. Papanikolas,et al.  Explicit formulas for Drinfeld modules and their periods , 2011, 1112.5378.

[22]  L. Taelman Special L-values of Drinfeld modules , 2010, 1004.4304.

[23]  Marina Daecher,et al.  Introduction To Cyclotomic Fields , 2016 .

[24]  M. Papanikolas,et al.  Algebraic independence of values of Goss L-functions at s=1 , 2011, 1105.6341.

[25]  Special L-values of t-motives: a conjecture , 2008, 0811.4522.

[26]  Jing Yu,et al.  On Characteristic Polynomials of Geometric Frobenius Associated to Drinfeld Modules , 2000, Compositio Mathematica.