Accurate, Validated and Fast Evaluation of Bézier Tensor Product Surfaces

This paper proposes a compensated algorithm to evaluate Bezier tensor product surfaces with floating-point coefficients and coordinates. This algorithm is based on the application of error-free transformations to improve the traditional de Casteljau tensor product algorithm. This compensated algorithm extends the compensated de Casteljau algorithm for the evaluation of a Bezier curve to the case of tensor product surfaces. Forward error analysis and numerical experiments illustrate the accuracy and efficiency of the proposed algorithm.

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[3]  Siegfried M. Rump,et al.  Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest , 2008, SIAM J. Sci. Comput..

[4]  Tony DeRose,et al.  Computing values and derivatives of Bézier and B-spline tensor products , 1995, Comput. Aided Geom. Des..

[5]  T. J. Dekker,et al.  A floating-point technique for extending the available precision , 1971 .

[6]  Stef Graillat,et al.  Accurate Floating-Point Product and Exponentiation , 2009, IEEE Transactions on Computers.

[7]  Juan Manuel Peña,et al.  Error analysis of corner cutting algorithms , 2004, Numerical Algorithms.

[8]  James Demmel,et al.  Design, implementation and testing of extended and mixed precision BLAS , 2000, TOMS.

[9]  Stef Graillat,et al.  Accurate simple zeros of polynomials in floating point arithmetic , 2008, Comput. Math. Appl..

[10]  Xiaoye S. Li,et al.  Algorithms for quad-double precision floating point arithmetic , 2000, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.

[11]  Philippe Langlois,et al.  Compensated Horner Scheme , 2005, Algebraic and Numerical Algorithms and Computer-assisted Proofs.

[12]  Lizhi Cheng,et al.  Accurate evaluation of a polynomial and its derivative in Bernstein form , 2010, Comput. Math. Appl..

[13]  Siegfried M. Rump,et al.  Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..

[14]  Nicolas Louvet,et al.  Algorithmes compensés en arithmétique flottante : précision, validation, performances. (Compensated algorithms in floating point arithmetic : accuracy, validation, performances) , 2007 .

[15]  Hao Jiang,et al.  Accurate evaluation algorithm for bivariate polynomial in Bernstein-Bézier form , 2011 .

[16]  Christoph Quirin Lauter,et al.  Basic building blocks for a triple-double intermediate format , 2005 .

[17]  Xiangke Liao,et al.  Accurate evaluation of a polynomial in Chebyshev form , 2011, Appl. Math. Comput..

[18]  Philippe Langlois,et al.  More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms , 2007 .

[19]  Siegfried M. Rump,et al.  Accurate Floating-Point Summation Part I: Faithful Rounding , 2008, SIAM J. Sci. Comput..

[20]  Philippe Langlois,et al.  Algorithms for accurate, validated and fast polynomial evaluation , 2009 .

[21]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[22]  Philippe Langlois,et al.  How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner Algorithm , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[23]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[24]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[25]  Juan Manuel Peña,et al.  Error analysis of efficient evaluation algorithms for tensor product surfaces , 2008 .