Prefrontal Microcircuits: Membrane Properties and Excitatory Input of Local, Medium, and Wide Arbor Interneurons

To elucidate cortical mechanisms involved in higher cortical functions such as working memory, we have examined feedforward excitation transmitted by identified pyramidal cells to interneurons with predominantly horizontal axonal arbors, using dual somatic recordings in prefrontal cortical slices. Interneurons with local (narrow) axonal arbors, especially chandelier interneurons, exhibited extremely narrow action potentials and high evoked firing rates, whereas neurons identified with wide arbor axons generated wider spikes and lower evoked firing rates with considerable spike adaptation, resembling that of pyramidal cells. Full reconstruction of differentially labeled neuronal pairs revealed that local arbor cells generally received a single but functionally reliable putative synaptic input from the identified pyramidal neuron member of the pair. In contrast, more synapses (two to five) were necessary to depolarize medium and wide arbor neurons reliably. The number of putative synapses and the amplitude of the postsynaptic response were remarkably highly correlated within each class of local, medium, and wide arbor interneurons (r = 0.88, 0.95, and 0.99, respectively). Similarly strong correlations within these subgroups were also present between the number of putative synapses and variance in the EPSP amplitudes, supporting the validity of our morphological analysis. We conclude that interneurons varying in the span of their axonal arbors and hence in the potential regulation of different numbers of cortical modules differ also in their excitatory synaptic input and physiological properties. These findings provide insight into the circuit basis of lateral inhibition and functional interactions within and between cortical columns in the cerebral cortex.

[1]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[2]  The Synaptic Organization of the Brain: An Introduction , 1975 .

[3]  P S Goldman-Rakic,et al.  Columnar organization of corticocortical projections in squirrel and rhesus monkeys: Similarity of column width in species differing in cortical volume , 1983, The Journal of comparative neurology.

[4]  P. Goldman-Rakic Modular organization of prefrontal cortex , 1984, Trends in Neurosciences.

[5]  A. Sillito Functional Considerations of the Operation of GABAergic Inhibitory Processes in the Visual Cortex , 1984 .

[6]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[7]  H Korn,et al.  Probabilistic determination of synaptic strength. , 1986, Journal of neurophysiology.

[8]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[9]  E. White,et al.  Intrinsic circuitry: Synapses involving the local axon collaterals of corticocortical projection neurons in the mouse primary somatosensory cortex , 1990, The Journal of comparative neurology.

[10]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[11]  P. Goldman-Rakic,et al.  The synaptology of parvalbumin‐immunoreactive neurons in the primate prefrontal cortex , 1992, The Journal of comparative neurology.

[12]  Ulf T. Eysel,et al.  Chapter 19 Lateral inhibitory interactions in areas 17 and 18 of the cat visual cortex , 1992 .

[13]  U. Eysel,et al.  Lateral inhibitory interactions in areas 17 and 18 of the cat visual cortex. , 1992, Progress in brain research.

[14]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[15]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[16]  T. Bonhoeffer,et al.  Relationship Between Lateral Inhibitory Connections and the Topography of the Orientation Map in Cat Visual Cortex , 1994, The European journal of neuroscience.

[17]  P S Goldman-Rakic,et al.  Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[18]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[19]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[21]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[22]  J. Deuchars,et al.  Properties of single axon excitatory postsynaptic potentials elicited in spiny interneurons by action potentials in pyramidal neurons in slices of rat neocortex , 1995, Neuroscience.

[23]  J. Deuchars,et al.  Innervation of burst firing spiny interneurons by pyramidal cells in deep layers of rat somatomotor cortex: Paired intracellular recordings with biocytin filling , 1995, Neuroscience.

[24]  G. Hu,et al.  Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro , 1996, Neuroscience.

[25]  P. Somogyi,et al.  Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. , 1997, The Journal of physiology.

[26]  N. Seidah,et al.  Regulation by gastric acid of the processing of progastrin‐derived peptides in rat antral mucosa , 1997, The Journal of physiology.

[27]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[28]  T I Tóth,et al.  The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones , 1997, The Journal of physiology.

[29]  Patricia S. Goldman-Rakic,et al.  Quantitative Three-Dimensional Analysis of the Catecholaminergic Innervation of Identified Neurons in the Macaque Prefrontal Cortex , 1997, The Journal of Neuroscience.

[30]  N. A. Lazareva,et al.  Orientation tuning and receptive field structure in cat striate neurons during local blockade of intracortical inhibition , 1998, Neuroscience.

[31]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[32]  M. L. Pucak,et al.  Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex , 1998, The Journal of comparative neurology.

[33]  P. Goldman-Rakic,et al.  D1 Receptor in Interneurons of Macaque Prefrontal Cortex: Distribution and Subcellular Localization , 1998, The Journal of Neuroscience.

[34]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[35]  P. Goldman-Rakic,et al.  D 1 Receptor in Interneurons of Macaque Prefrontal Cortex : Distribution and Subcellular Localization , 1998 .

[36]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[37]  J J Jack,et al.  Synaptic interactions between smooth and spiny neurones in layer 4 of cat visual cortex in vitro , 1998, The Journal of physiology.

[38]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[39]  M. C. Angulo,et al.  Developmental Synaptic Changes Increase the Range of Integrative Capabilities of an Identified Excitatory Neocortical Connection , 1999, The Journal of Neuroscience.

[40]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[41]  P. Goldman-Rakic,et al.  Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. , 1999, Journal of neurophysiology.

[42]  R. Chitwood,et al.  Passive electrotonic properties of rat hippocampal CA3 interneurones , 1999, The Journal of physiology.

[43]  P. Jonas,et al.  Distal initiation and active propagation of action potentials in interneuron dendrites. , 2000, Science.

[44]  P. Goldman-Rakic,et al.  Destruction and Creation of Spatial Tuning by Disinhibition: GABAA Blockade of Prefrontal Cortical Neurons Engaged by Working Memory , 2000, The Journal of Neuroscience.

[45]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[46]  P. Goldman-Rakic,et al.  Coding Specificity in Cortical Microcircuits: A Multiple-Electrode Analysis of Primate Prefrontal Cortex , 2001, The Journal of Neuroscience.

[47]  German Barrionuevo,et al.  Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex , 2001, The Journal of comparative neurology.