A coupling of weak Galerkin and mixed finite element methods for poroelasticity

Abstract In this paper, we present a coupling of a weak Galerkin method for the displacement of the solid phase with a standard mixed finite method for the pressure and velocity of the fluid phase in poroelasticity equation. Because our method provides a stable element combination for the mixed linear elasticity problem, it can avoid the poroelasticity locking mathematically. Indeed, uniform-in-time error estimates of all the unknowns are obtained for both semidiscrete scheme and fully discrete scheme without assuming that the constrained specific storage coefficient is uniformly positive. Compared with the method proposed by Jeonghun J. Lee, our method can get the arbitrary convergence order by changing degree of the polynomial. As for the computational cost, we can use the modified weak Galerkin method to eliminate the boundary term and reduce the number of unknowns. In addition, we do not use Gronwall inequality in the error analysis. Finally, the numerical experiments verify the theoretical analysis and show the effectiveness to overcome spurious pressure oscillations.

[1]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[2]  L E Plansky On the management organization and procedural standardization of geologic research , 1985 .

[3]  Mary F. Wheeler,et al.  Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity , 2013, Computational Geosciences.

[4]  Yanzhao Cao,et al.  Quasilinear poroelasticity: Analysis and hybrid finite element approximation , 2015 .

[5]  Olaf Kolditz,et al.  Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches , 2006 .

[6]  Yanzhao Cao,et al.  Steady flow in a deformable porous medium , 2014 .

[7]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[8]  J. Mandel Consolidation Des Sols (Étude Mathématique) , 1953 .

[9]  John A. Hudson,et al.  Coupled T–H–M issues relating to radioactive waste repository design and performance , 2001 .

[10]  M. Biot General solutions of the equations of elasticity and consolidation for a porous material , 1956 .

[11]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[12]  Lin Mu,et al.  Weak Galerkin Finite Element Methods for Second-Order Elliptic Problems on Polytopal Meshes , 2012 .

[13]  S. I. Barry,et al.  Exact Solutions for Two-Dimensional Time-Dependent Flow and Deformation Within a Poroelastic Medium , 1999 .

[14]  Lynn S. Bennethum,et al.  On the derivation of the transport equation for swelling porous materials with finite deformation , 2006 .

[15]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[16]  Joachim Berdal Haga,et al.  On the causes of pressure oscillations in low‐permeable and low‐compressible porous media , 2012 .

[17]  M. Wheeler,et al.  A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity , 2008 .

[18]  Shangyou Zhang,et al.  A Weak Galerkin Finite Element Method for the Maxwell Equations , 2013, Journal of Scientific Computing.

[19]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[20]  David Kay,et al.  Stabilized Lowest-Order Finite Element Approximation for Linear Three-Field Poroelasticity , 2015, SIAM J. Sci. Comput..

[21]  Lin,et al.  ON L2 ERROR ESTIMATE FOR WEAK GALERKIN FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS , 2014 .

[22]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .

[23]  Zoltán Molnár,et al.  A hydroelastic model of hydrocephalus , 2005, Journal of Fluid Mechanics.

[24]  Ruijie Liu,et al.  Discontinuous Galerkin finite element solution for poromechanics , 2004 .

[25]  Guang Lin,et al.  A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods , 2015, J. Comput. Appl. Math..

[26]  Wenbin Chen,et al.  Weak Galerkin method for the coupled Darcy-Stokes flow , 2014, 1407.5604.

[27]  YE XIU,et al.  A MODIFIED WEAK GALERKIN FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS , 2014 .

[28]  Emmanuel M Detournay,et al.  An analysis of the influence of the pressurization rate on the borehole breakdown pressure , 1997 .

[29]  Son-Young Yi Convergence analysis of a new mixed finite element method for Biot's consolidation model , 2014 .

[30]  R. Parizek,et al.  Numerical simulation of the Noordbergum effect resulting from groundwater pumping in a layered aquifer system , 1997 .

[31]  Maria Vasilyeva,et al.  A Generalized Multiscale Finite Element Method for poroelasticity problems I: Linear problems , 2015, J. Comput. Appl. Math..

[32]  Yanzhao Cao,et al.  ANALYSIS AND NUMERICAL APPROXIMATIONS OF EQUATIONS OF NONLINEAR POROELASTICITY , 2013 .

[33]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[34]  Grady I. Lemoine,et al.  Finite Volume Modeling of Poroelastic-Fluid Wave Propagation with Mapped Grids , 2013, SIAM J. Sci. Comput..

[35]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case , 2007 .

[36]  R. Kenedi,et al.  Tissue mechanics. , 1975, Physics in medicine and biology.

[37]  Maurice B. Dusseault,et al.  A coupled conductive–convective thermo-poroelastic solution and implications for wellbore stability , 2003 .

[38]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[39]  S. Kelly,et al.  Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid , 1956 .

[40]  R A Brand,et al.  Micromechanically based poroelastic modeling of fluid flow in Haversian bone. , 2003, Journal of biomechanical engineering.

[41]  Mary F. Wheeler,et al.  Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach , 2009 .

[42]  Thomas McMillan,et al.  A modified weak Galerkin finite element method , 2014, J. Comput. Appl. Math..

[43]  Ruishu Wang,et al.  A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation , 2015, J. Comput. Appl. Math..

[44]  Jeonghun J. Lee Guaranteed locking-free finite element methods for Biot's consolidation model in poroelasticity , 2014 .

[45]  Emmanuel M Detournay,et al.  Poroelastic response of a borehole in a non-hydrostatic stress field , 1988 .

[46]  Junping Wang,et al.  A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation with Large Wave Numbers , 2011, 1310.6005.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  Junping Wang,et al.  Weak Galerkin finite element methods for Parabolic equations , 2012, 1212.3637.

[49]  Johannes Korsawe,et al.  A Least-Squares Mixed Finite Element Method for Biot's Consolidation Problem in Porous Media , 2005, SIAM J. Numer. Anal..

[50]  Son-Young Yi A coupling of nonconforming and mixed finite element methods for Biot's consolidation model , 2013 .

[51]  Bernhard A. Schrefler,et al.  The Finite Element Method in the Deformation and Consolidation of Porous Media , 1987 .

[52]  Junping Wang,et al.  A computational study of the weak Galerkin method for second-order elliptic equations , 2011, Numerical Algorithms.

[53]  R. Rajapakse,et al.  Stress Analysis of Borehole in Poroelastic Medium , 1993 .

[54]  Junping Wang,et al.  A weak Galerkin finite element method for the stokes equations , 2013, Adv. Comput. Math..